World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

The subfield metric and its application to quantum error correction

    https://doi.org/10.1142/S021949882550063XCited by:0 (Source: Crossref)
    This article is part of the issue:

    We introduce a new weight and corresponding metric over finite extension fields for asymmetric error correction. The weight distinguishes between elements from the base field and the ones outside of it, which is motivated by asymmetric quantum codes. We set up the theoretic framework for this weight and metric, including upper and lower bounds, asymptotic behavior of random codes, and we show the existence of an optimal family of codes achieving the Singleton-type upper bound.

    Communicated by Jens Zumbraegel

    AMSC: 11T71, 94B05, 94B65

    References

    • 1. A. R. Calderbank and P. W. Shor , Good quantum error-correcting codes exist, Phys. Rev. A 54 (1996) 1098–1105. Crossref, Web of ScienceGoogle Scholar
    • 2. P. Delsarte , Bounds for unrestricted codes, by linear programming, Philips Res. Rep. 27 (1972) 272–289. Google Scholar
    • 3. M. F. Ezerman, S. Jitman, S. Ling and D. V. Pasechnik , CSS-like constructions of asymmetric quantum codes, IEEE Trans. Inform. Theory 59 (2013) 6732–6754. Crossref, Web of ScienceGoogle Scholar
    • 4. E. Gabidulin , Theory of codes with maximum rank distance, Problemy Peredachi Informatsii 21(1) (1985) 3–16. Google Scholar
    • 5. E. Gabidulin , A brief survey of metrics in coding theory, Math. Distances Appl. 66 (2012) 66–84. Google Scholar
    • 6. D. Gardy and P. Solé , Saddle point techniques in asymptotic coding theory, in Workshop on Algebraic Coding, eds. G. Cohen, A. Lobstein, G. Zémor and S. Litsyn , Lecture Notes in Computer Science, Vol. 573 (Springer, 1991), pp. 75–81. Google Scholar
    • 7. H. Gluesing-Luerssen , Fourier-reflexive partitions and MacWilliams identities for additive codes, Des. Codes Cryptog. 75 (2015) 543–563. Crossref, Web of ScienceGoogle Scholar
    • 8. M. Grassl , Algebraic quantum codes: Linking quantum mechanics and discrete mathematics, Int. J. Comput. Math.: Comput. Syst. Theory 6(4) (2021) 243–250. CrossrefGoogle Scholar
    • 9. A. Gruica, A.-L. Horlemann, A. Ravagnani and N. Willenborg , Densities of codes of various linearity degrees in translation-invariant metric spaces, Des. Codes Cryptogr. (2023), https://doi.org/10.1007/s10623-023-01236-2. Web of ScienceGoogle Scholar
    • 10. L. Ioffe and M. Mézard , Asymmetric quantum error-correcting codes, Phys. Rev. A 75 (2007) 032345. Crossref, Web of ScienceGoogle Scholar
    • 11. A. Ketkar, A. Klappenecker, S. Kumar and P. K. Sarvepalli , Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory 52 (2006) 4892–4914. Crossref, Web of ScienceGoogle Scholar
    • 12. F. J. MacWilliams and N. J. A. Sloane , The Theory of Error-Correcting Codes (North Holland, Amsterdam, 1977). Google Scholar
    • 13. M. A. Nielsen and I. Chuang , Quantum computation and quantum information (Cambridge University Press, 2002). Google Scholar
    • 14. A. M. Steane , Simple quantum error correcting codes, Phys. Rev. A 54 (1996) 4741–4751. Crossref, Web of ScienceGoogle Scholar
    • 15. V. A. Zinoviev and T. Ericson , Fourier-invariant pairs of partitions of finite abelian groups and association schemes, Probl. Inform. Transm. 45(3) (2009) 221–231. Crossref, Web of ScienceGoogle Scholar