World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

On the matroidal path ideals

    https://doi.org/10.1142/S0219498823502274Cited by:0 (Source: Crossref)

    In this paper, we prove that the set of all paths of a fixed length in a complete multipartite graph is the bases of a matroid. Moreover, we discuss the Cohen–Macaulayness and depth of powers of t-path ideals of a complete multipartite graph.

    Communicated by E. Gorla

    AMSC: 05B35, 05E40, 13C13

    References

    • 1. R. R. Asghar and S. Yassemi , On the weakly polymatroidal property of the edge ideals of hypergraphs, Comm. Algebra 42 (2014) 1011–1021. Crossref, Web of ScienceGoogle Scholar
    • 2. S. Bandari and J. Herzog , Monomial localizations and polymatroidal ideals, Eur. J. Combin. 34 (2013) 752–763. Crossref, Web of ScienceGoogle Scholar
    • 3. R. Bouchat, H. T. Hà and A. O. Keefe , Path ideals of rooted trees and their grad Betti numbers, J. Combin. Theory Ser. A 118(8) (2011) 2411–2425. Crossref, Web of ScienceGoogle Scholar
    • 4. M. Brodmann , The asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979) 35–39. Crossref, Web of ScienceGoogle Scholar
    • 5. D. Campos, R. Gunderson, S. Morey, C. Paulsen and T. Polstra , Depths and Cohen–Macaulay properties of path ideals, J. Pure Appl. Algebra 218(8) (2014) 1537–1543. Crossref, Web of ScienceGoogle Scholar
    • 6. H. Chiang-Hsieh , Some arithmetic properties of matroidal ideals, Comm. Algebra 38 (2010) 944–952. Crossref, Web of ScienceGoogle Scholar
    • 7. A. Conca and J. Herzog , Castelnuovo–Mumford regularity of products of ideals, Collect. Math. 54(2) (2003) 137–152. Google Scholar
    • 8. A. Conca and E. D. Negri , M-sequences, graph ideals, and ladder ideals of linear type, J. Algebra 211(2) (1999) 599–624. Crossref, Web of ScienceGoogle Scholar
    • 9. J. Edmonds , Submodular functions, matroids, and certain polyhedra, in Combinatorial Structures and Their Applications, eds. R. GuyH. HananiN. SauerJ. Schonheim (Gordon and Breach, New York, 1970). Google Scholar
    • 10. J. He and A. V. Tuyl , Algebraic properties of the path ideal of a tree, Comm. Algebra 38(5) (2010) 1725–1742. Crossref, Web of ScienceGoogle Scholar
    • 11. J. Herzog and T. Hibi , The depth of powers of an ideal, J. Algebra 291 (2005) 534–550. Crossref, Web of ScienceGoogle Scholar
    • 12. J. Herzog and T. Hibi , Cohen–Macaulay polymatroidal ideals, Eur. J. Combin. 27(4) (2006) 513–517. Crossref, Web of ScienceGoogle Scholar
    • 13. J. Herzog and T. Hibi , Bounding the socles of powers of squarefree monomial ideals, Commutative Algebra Noncommutative Algebraic Geom. 68 (2015) 223–229. Google Scholar
    • 14. J. Herzog and T. Hibi , Discrete polymatroids, J. Algebra Comb. 16 (2002) 239–268. Crossref, Web of ScienceGoogle Scholar
    • 15. J. Herzog and A. A. Qureshi , Persistence and stability properties of power of ideals, J. Pure Appl. Algebra 219(3) (2015) 530–542. Crossref, Web of ScienceGoogle Scholar
    • 16. J. Herzog, A. Rauf and M. Vladoiu , The stable set of associated prime ideals of a polymatroidal ideal, J. Algebra Comb. 37(2) (2013) 289–312. Crossref, Web of ScienceGoogle Scholar
    • 17. J. Herzog and Y. Takayama , Resolutions by mapping cones, The roos Festschrift, Vol. 2, Homology Homotopy Appl. 4 (2002) 277–294. CrossrefGoogle Scholar
    • 18. J. Herzog and M. Vladoiu , Squarefree monomial ideals with constant depth function, J. Pure Appl. Algebra 217 (2013) 1764–1772. Crossref, Web of ScienceGoogle Scholar
    • 19. L. T. Hoa and N. D. Tam , On some invariants of a mixed product of ideals, Arch. Math. 94(4) (2010) 327–337. Crossref, Web of ScienceGoogle Scholar
    • 20. J. G. Oxley , Matroid Theory (Oxford University Press, Oxford, New York, 1992). Google Scholar
    • 21. G. Restuccia and R. H. Villarreal , On the normality of monomial ideals of mixed products, Comm. Algebra 29(8) (2001) 3571–3580. Crossref, Web of ScienceGoogle Scholar
    • 22. R. H. Villarreal , Rees cones and monomial rings of matroids, Linear Algebra Appl. 428 (2008) 2933–2940. Crossref, Web of ScienceGoogle Scholar
    • 23. D. J. A. Welsh , Matroid Theory (Academic Press, London, 1976). Google Scholar