World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Efficiency and Long-Range Correlation in G-20 Stock Indexes: A Sliding Windows Approach

    https://doi.org/10.1142/S021947752250033XCited by:13 (Source: Crossref)

    This paper aims to analyze whether the financial crises of the past 20 years have reduced efficiency, in its weak form, in 19 stock markets belonging to the 20 most developed economies (G-20). The sample period comprises the period from 2 January 2000 to 5 February 2021 with the respective financial crises, namely, Dot-com, Argentina, Subprime, Sovereign debt, China stock market crash (2015–2016), UK’s withdrawal from the European Union and the global pandemic of 2020. The results highlight that most markets show signs of (in)efficiency in each sliding window (1000 days), that is, they show asymmetries and non-Gaussian distributions, and αDFA0.5. These findings suggest that the random walk hypothesis is rejected in certain markets, which has implications for investors, since some returns may be expected, creating arbitrage and abnormal profit opportunities, contrary to the random walk and informational efficiency hypotheses. The results found also open room for market regulators to take steps to ensure better informational data across international financial markets.

    Communicated by Wei-Xing Zhou

    References

    • 1. E. Fama , Efficient capital markets: A review of theory and empirical work, J. Finance 25(2) (1970) 383–417. Crossref, Web of ScienceGoogle Scholar
    • 2. E. F. Fama , Efficient capital markets: II, J. Finance 46(5) (1991) 1575–1617. Crossref, Web of ScienceGoogle Scholar
    • 3. J. Dowc and G. Gorton , Stock market efficiency and economic efficiency: Is there a connection?, J. Finance 52(3) (1997) 4–6. Google Scholar
    • 4. B. G. Malkiel , The efficient market hypothesis and its critics, J. Econ. Perspect. 17(1) (2003) 59–82. Crossref, Web of ScienceGoogle Scholar
    • 5. R. J. Shiller , From efficient markets theory to behavioral finance, J. Econ. Perspect. 17(1) (2003) 83–104. Crossref, Web of ScienceGoogle Scholar
    • 6. M. Sewell , The efficient market hypothesis: Empirical evidence, Int. J. Stat. Probab. 1(2) (2012) 164. CrossrefGoogle Scholar
    • 7. A. G. Titan , The efficient market hypothesis: Review of specialized literature and empirical research, Procedia Econ. Finance 32 (2015) 442–449. CrossrefGoogle Scholar
    • 8. J. Liu, Q. Song, Y. Qi, S. Rahman and S. Sriboonchitta , Measurement of systemic risk in global financial markets and its application in forecasting trading decisions, Sustainability 12(10) (2020) 4000. Crossref, Web of ScienceGoogle Scholar
    • 9. S. G. Fifield and J. Jetty , Further evidence on the efficiency of the Chinese stock markets: A note, Res. Int. Bus. Finance 22(3) (2008) 351–361. CrossrefGoogle Scholar
    • 10. A. Beltratti, B. Bortolotti and M. Caccavaio , Stock market efficiency in China: Evidence from the split-share reform, Q. Rev. Econ. Finance 60 (2016) 125–137. CrossrefGoogle Scholar
    • 11. K. R. French , Stock returns and the weekend effect, J. Financial Econ. 8(1) (1980) 55–69. Crossref, Web of ScienceGoogle Scholar
    • 12. R. H. Thaler , Anomalies: The january effect, Econ. Perspect. 1(1) (1987) 197–201. CrossrefGoogle Scholar
    • 13. R. A. Ariel , High stock returns before holidays: Existence and evidence on possible causes, J. Finance 45(5) (1990) 1611–1626. Crossref, Web of ScienceGoogle Scholar
    • 14. A. Agrawal and K. Tandon , Anomalies or illusions? Evidence from stock markets in eighteen countries, J. Int. Money Finance 13(1) (1994) 83–106. Crossref, Web of ScienceGoogle Scholar
    • 15. F. Guidi, R. Gupta and S. Maheshwari , Weak-form market efficiency and calendar anomalies for Eastern Europe equity markets, J. Emerg. Market Finance 10(3) (2011) 337–389. CrossrefGoogle Scholar
    • 16. T. Verheyden, L. De Moor and F. Van Den Bossche , A tale of market efficiency, Rev. Bus. Econ. Literature 58 (2013) 140–158. Google Scholar
    • 17. A. Todea and D. Lazar , Global crisis and relative efficiency: Empirical evidence from Central and Eastern European stock markets, Rev. Finance Bank. 4(1) (2012) 45–53. Google Scholar
    • 18. A. W. Lo , Long-term memory in stock market prices, Econometrica 59(5) (1991) 1279–1313. Crossref, Web of ScienceGoogle Scholar
    • 19. Y.-W. Cheung and K. S. Lai , A search for long memory in international stock market returns, J. Int. Money Finance 14(4) (1995) 597–615. Crossref, Web of ScienceGoogle Scholar
    • 20. I. N. Lobato and C. Velasco , Long memory in stock-market trading volume, J. Bus. Econ. Stat. 18(4) (2000) 410–427. Crossref, Web of ScienceGoogle Scholar
    • 21. S. Sadique and P. Silvapulle , Long-term memory in stock market returns: International evidence, Int. J. Finance Econ. 6(1) (2001) 59–67. Crossref, Web of ScienceGoogle Scholar
    • 22. F. Lillo and J. D. Farmer , The long memory of the efficient market, Stud. Nonlinear Dyn. Econom. 8(3) (2004) 1–35. Crossref, Web of ScienceGoogle Scholar
    • 23. D. Sornette , Why Stock Markets Crash Critical Events in Complex Financial Systems (Princeton University Press, 2003). Google Scholar
    • 24. T. Kaizoji and D. Sornette, Market bubbles and crashes, Munich Personal RePEC Archive (40798) (2008), pp. 1–25. Google Scholar
    • 25. W. A. Risso , The informational efficiency and the financial crashes, Res. Int. Bus. Finance 22(3) (2008) 396–408. CrossrefGoogle Scholar
    • 26. S. Galam, Market efficiency, anticipation and the formation of bubbles-crashes (2011), arXiv:1106.1577. Google Scholar
    • 27. Z.-Q. Jiang, W.-J. Xie and W.-X. Zhou , Testing the weak-form efficiency of the WTI crude oil futures market, Physica A 405 (2014) 235–244. Crossref, Web of ScienceGoogle Scholar
    • 28. Z.-Q. Jiang, W.-J. Xie, W.-X. Zhou and D. Sornette , Multifractal analysis of financial markets: A review, Rep. Prog. Phys. 82(12) (2019) 125901. Crossref, Web of ScienceGoogle Scholar
    • 29. J. Sukpitak and V. Hengpunya , Efficiency of Thai stock markets: Detrended fluctuation analysis, Physica A 458 (2016) 204–209. Crossref, Web of ScienceGoogle Scholar
    • 30. A. Carbone, G. Castelli and H. Stanley , Time–dependent Hurst exponent in financial time series, Physica A 344 (2004) 267–271. Crossref, Web of ScienceGoogle Scholar
    • 31. D. O. Cajueiro and B. M. Tabak , Testing for time-varying long-range dependence in volatility for emerging markets, Physica A 346(3) (2005) 577–588. Crossref, Web of ScienceGoogle Scholar
    • 32. J. Alvarez-Ramirez, J. Alvarez, E. Rodriguez and G. Fernandez-Anaya , Time-varying Hurst exponent for US stock markets, Physica A 387 (2008) 6159–6169. Crossref, Web of ScienceGoogle Scholar
    • 33. J. Alvarez-Ramirez, J. Alvarez and E. Rodriguez , Short-term predictability of crude oil markets: A detrended fluctuation analysis approach, Energy Econ. 30(5) (2008) 2645–2656. Crossref, Web of ScienceGoogle Scholar
    • 34. D. O. Cajueiro and B. M. Tabak , Testing for time-varying long-range dependence in real state equity returns, Chaos, Solitons Fractals 38(1) (2008) 293–307. Crossref, Web of ScienceGoogle Scholar
    • 35. D. O. Cajueiro, P. Gogas and B. M. Tabak , Does financial market liberalization increase the degree of market efficiency? The case of the Athens stock exchange, Int. Rev. Financial Anal. 18(1–2) (2009) 50–57. CrossrefGoogle Scholar
    • 36. A. Bariviera, M. B. Guercio and L. B. Martinez , A comparative analysis of the informational efficiency of the fixed income market in seven European countries, Econ. Lett. 116(3) (2012) 426–428. Crossref, Web of ScienceGoogle Scholar
    • 37. A. Sensoy , Time-varying long range dependence in market returns of FEAS members, Chaos, Solitons Fractals 53 (2013) 39–45. Crossref, Web of ScienceGoogle Scholar
    • 38. A. Sensoy and B. M. Tabak, How much random does European Union walk? A time-varying long memory analysis, Working Paper Series 342 (2013), pp. 1–31. Google Scholar
    • 39. C. Guangxi, H. Yan and C. Weijun , Time-varying long memories of the Chinese currency and stock markets based on the Hurst exponent, Fluct. Noise Lett. 13(1) (2014) 1450007. Link, Web of ScienceGoogle Scholar
    • 40. S. H. Kang, R. Mclver, S.-Y. Park and S.-M. Yoon , Long memory features evolve in the time-varying process in Asia-Pacific foreign exchange markets, Procedia Econ. Finance 14 (2014) 286–294. CrossrefGoogle Scholar
    • 41. A. Sensoy and E. Hacihasanoglu , Time-varying long range dependence in energy futures markets, Energy Econ. 46 (2014) 318–327. Crossref, Web of ScienceGoogle Scholar
    • 42. A. Sensoy and B. M. Tabak , Time-varying long term memory in the European Union stock markets, Physica A 436 (2015) 147–158. Crossref, Web of ScienceGoogle Scholar
    • 43. A. Sensoy and B. M. Tabak , Dynamic efficiency of stock markets and exchange rates, Int. Rev. Financial Anal. 47 (2016) 353–371. Crossref, Web of ScienceGoogle Scholar
    • 44. P. Ferreira, A. Dionisio, E. F. Guedes and G. F. Zebende , A sliding windows approach to analyse the evolution of bank shares in the European Union, Physica A 490 (2018) 1355–1367. Crossref, Web of ScienceGoogle Scholar
    • 45. E. Guedes, P. Ferreira, A. Dionísio and G. Zebende , An econophysics approach to study the effect of BREXIT referendum on European Union stock markets, Physica A 523 (2019) 1175–1182. Crossref, Web of ScienceGoogle Scholar
    • 46. E. Guedes and G. Zebende , DCCA cross-correlation coefficient with sliding windows approach, Physica A 527 (2019) 121286. Crossref, Web of ScienceGoogle Scholar
    • 47. O. Tilfani, P. Ferreira and M. Y. E. Boukfaoui , Dynamic cross-correlation and dynamic contagion of stock markets: A sliding windows approach with the DCCA correlation coefcient, Empir. Econ. 60 (2019) 1127–1156. Crossref, Web of ScienceGoogle Scholar
    • 48. G. Gibson , The Stock Markets of London, Paris and New York (G.P. Putnam’s Sons, New York, 1889). Google Scholar
    • 49. L. Bachelier , Théorie de la spéculation [ph.d. thesis in mathematics], Ann. Sci. de I’École Norm. Supérieure 17 (1900) 21–86. CrossrefGoogle Scholar
    • 50. K. Pearson , The problem of the random walk, Nature 72 (1905) 318. CrossrefGoogle Scholar
    • 51. A. Cowles , Can stock market forecasters forecast?, Econometrica 1(3) (1933) 309–324. CrossrefGoogle Scholar
    • 52. H. Working , The investigation of economic expectations, Am. Econ. Rev. 39(3) (1949) 150–166. Web of ScienceGoogle Scholar
    • 53. M. G. Kendall and A. B. Hill , The analysis of economic time-series-part i: Prices, J. R. Stat. Soc. Ser. A (Gen.) 116(1) (1953) 11–34. Crossref, Web of ScienceGoogle Scholar
    • 54. H. Working , A random-difference series for use in the analysis of time series, J. Am. Stat. Assoc. 29(185) (1934) 11–24. CrossrefGoogle Scholar
    • 55. H. V. Roberts , Stock-market “patterns” and financial analysis: Methodological suggestions, J. Finance 14(1) (1959) 1–10. Web of ScienceGoogle Scholar
    • 56. A. Cowles , A revision of previous conclusions regarding stock price behavior, Econometrica 28(4) (1960) 909–915. Crossref, Web of ScienceGoogle Scholar
    • 57. A. Cowles and H. E. Jones , Some a posteriori probabilities in stock market action, Econometrica 5(3) (1937) 280–294. CrossrefGoogle Scholar
    • 58. E. F. Fama , Random walks in stock market prices, Financial Anal. J. 21(5) (1965) 55–59. CrossrefGoogle Scholar
    • 59. L. H. Summers , Does the stock market rationally reflect fundamental values?, J. Finance 41 (1986) 591–601. Crossref, Web of ScienceGoogle Scholar
    • 60. E. F. Fama and K. R. French , Dividend yields and expected stock returns, J. Financial Econ. 22(1) (1988) 3–25. Crossref, Web of ScienceGoogle Scholar
    • 61. J. M. Poterba and L. H. Summers , Mean reversion in stock prices: Evidence and implications, J. Financial Econ. 22(1) (1988) 27–59. Crossref, Web of ScienceGoogle Scholar
    • 62. O. Malafeyev, A. Awasthi, K. Kambekar and A. Kupinskaya , Random walks and market efficiency in Chinese and Indian equity markets, Statistics, Optim. Inf. Comput. 7 (2019) 1–25. Google Scholar
    • 63. K. Hamid, M. T. Suleman, S. Z. A. Shah and R. S. I. Akash , Testing the weak form of efficient market hypothesis: Empirical evidence from Asia-Pacific markets, Int. Res. J. Finance Econ. 58 (2010) 121–133. Google Scholar
    • 64. S. Nisar and M. Hanif , Testing weak form of efficient market hypothesis: Empirical evidence from South Asia, World Appl. Sci. J. 17(4) (2011) 414–427. Google Scholar
    • 65. S. Mehla and S. K. Goyal , Empirical evidence on weak form of efficiency in Indian stock market, Asia-Pacific J. Manag. Res. Innov. 8(1) (2012) 59–68. CrossrefGoogle Scholar
    • 66. H. Shirvani and N. V. Delcoure , The random walk in the stock prices of 18 OECD countries: Some robust panel-based integration and cointegration tests, J. Econ. Studies 43(4) (2016) 598–608. CrossrefGoogle Scholar
    • 67. G. Ngene, K. A. Tah and A. F. Darrat , The random-walk hypothesis revisited: New evidence on multiple structural breaks in emerging markets, Macroecon. Finance Emerg. Mark. Econ. 10(1) (2017) 88–106. Google Scholar
    • 68. W. Mensi, A. K. Tiwari and S.-M. Yoon , Global financial crisis and weak-form efficiency of islamic sectoral stock markets: An MF-DFA analysis, Physica A 471 (2017) 135–146. Crossref, Web of ScienceGoogle Scholar
    • 69. D. Aggarwal , Random walk model and asymmetric effect in Korean composite stock price index, Afro-Asian J. Finance Account. 8(1) (2018) 85. CrossrefGoogle Scholar
    • 70. S. S. Rehman and P. D. Posta , The impact of Brexit on EU27 on trade, investments and financial services, Global Econ. J. 18(1) (2018) 1–17. Web of ScienceGoogle Scholar
    • 71. G. Pernagallo and B. Torrisi , An empirical analysis on the degree of gaussianity and long memory of financial returns in emerging economies, Physica A 527 (2019) 121296. Crossref, Web of ScienceGoogle Scholar
    • 72. G. Zanalda , Financial crises, history of, in International Encyclopedia of the Social & Behavioral Sciences, ed. J. D. Wright , 2nd edn. (Elsevier, Oxford, 2015), pp. 183–190. CrossrefGoogle Scholar
    • 73. C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley and A. L. Goldberger , Mosaic organization of DNA nucleotides, Phys. Rev. E 49 (1994) 1685–1689. Crossref, Web of ScienceGoogle Scholar
    • 74. G. F. Zebende, B. F. Fernandez and M. G. Pereira , Analysis of the variability in the sdB star KIC 10670103: DFA approach, Mon. Not. R. Astron. Soc. 464 (2017) 2638–2642. Crossref, Web of ScienceGoogle Scholar
    • 75. G. F. Zebende, F. M. Oliveira-Filho and J. Leyva-Cruz , Auto-correlation in the motor/imaginary human EEG signals: A vision about the FDFA fluctuations, PLoS One 12 (2017) e0183121. Crossref, Web of ScienceGoogle Scholar
    • 76. E. F. Guedes, I. C. da Cunha Lima, G. F. Zebende and A. M. Silva-Filho, SlidingWindows: Methods for time series analysis, R package version 0.1.4 (2020), https://CRAN.R-project.org/package=SlidingWindows. Google Scholar