World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Buckling and Post-Buckling of Bidirectional Porous Beam Under Bidirectional Hygrothermal Environment

    https://doi.org/10.1142/S0219455424500202Cited by:4 (Source: Crossref)

    In this paper, buckling and nonlinear post-buckling behaviors of a bidirectional porous (BDP) beam are investigated under bidirectional hygrothermal environment. Euler–Bernoulli beam theory with the von Kármán nonlinearity is employed to derive the nonlinear variable coefficient governing differential equations based on Rayleigh quotient method. Analytical solutions of critical buckling load and load–deflection equilibrium path in post-buckling are deduced for the single directional varying (SDV) porous beam. The general numerical solutions for bidirectional varying (BDV) porous beam are obtained by differential quadrature finite element method (DQFEM) with Newton–Raphson iteration method based on the variation principle. The high accuracy of the present numerical method with higher computing efficiency is verified by comparison with published reports and the analytical results in this work. Parametric analysis on effects of the porosity bidirectional distributions, porosity coefficients, distributions of hygrothermal environment and boundary conditions on buckling load and post-buckling response is carried out to enhance the buckling and deformation resistances in design, manufacture and usage of porous structures. The results show that the bidirectional porosity pattern, linear and nonlinear hygrothermal distribution and boundary conditions play a significant role on buckling critical external load and critical hygrothermal increments, buckling form and post-buckling path.

    References

    • 1. J. J. Lee and S. Choi, Thermal buckling and postbuckling analysis of a laminated composite beam with embedded SMA actuators, Compos. Struct. 47(1) (1999) 695–703. Crossref, Web of ScienceGoogle Scholar
    • 2. M. Bouazza, N. Benseddiq and A. M. Zenkour, Thermal buckling analysis of laminated composite beams using hyperbolic refined shear deformation theory, J. Therm. Stresses 42(3) (2018) 332–340. Crossref, Web of ScienceGoogle Scholar
    • 3. A. A. Khdeir, Thermal buckling of cross-ply laminated composite beams, Acta Mech. 149 (2001) 201–213. Crossref, Web of ScienceGoogle Scholar
    • 4. S. A. Emam, Analysis of shear-deformable composite beams in postbuckling, Compos. Struct. 94(1) (2011) 24–30. Crossref, Web of ScienceGoogle Scholar
    • 5. R. K. Gupta, J. B. Gunda, G. Ranga Janardhan and G. Venkateswara Rao, Post-buckling analysis of composite beams: Simple and accurate closed-form expressions, Compos. Struct. 92(8) (2010) 1947–1956. Crossref, Web of ScienceGoogle Scholar
    • 6. S. Refrafi, A. A. Bousahla, A. Bouhadra, A. Menasria, F. Bourada, A. Tounsi, E. A. A. Bedia, S. R. Mahmoud, K. H. Benrahou and A. Tounsi, Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations, Comput. Concr. 25(4) (2020) 311–325. Web of ScienceGoogle Scholar
    • 7. B. Akgöz and Ö. Civalek, Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium, Int. J. Eng. Sci. 85 (2014) 90–104. Crossref, Web of ScienceGoogle Scholar
    • 8. Y. H. Dong, Y. F. Zhang and Y. H. Li, An analytical formulation for postbuckling and buckling vibration of micro-scale laminated composite beams considering hygrothermal effect, Compos. Struct. 170 (2017) 11–25. Crossref, Web of ScienceGoogle Scholar
    • 9. R. Kolahchi and F. Kolahdouzan, A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions, Appl. Math. Model. 91 (2021) 458–475. Crossref, Web of ScienceGoogle Scholar
    • 10. D. Shahsavari, B. Karami and S. Mansouri, Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories, Europ. J. Mech. A-Solids, 67 (2018) 200–214. Crossref, Web of ScienceGoogle Scholar
    • 11. R. Pandey, A. K. Upadhyay and K. K. Shukla, Hygrothermoelastic postbuckling response of laminated composite plates, J. Aerosp. Eng. 23(1) (2010) 1–13. Crossref, Web of ScienceGoogle Scholar
    • 12. V. M. Sreehari and D. K. Maiti, Buckling and post buckling analysis of laminated composite plates in hygrothermal environment using an inverse hyperbolic shear deformation theory, Compos. Struct. 129 (2015) 250–255. Crossref, Web of ScienceGoogle Scholar
    • 13. M. W. Zaitoun, A. Chikh, A. Tounsi, M. A. Al-Osta, A. Sharif, S. U. Al-Dulaijan and M. M. Al-Zahrani, Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment, Thin-Walled Struct. 170 (2022) 108549. Crossref, Web of ScienceGoogle Scholar
    • 14. M. Karimiasl, F. Ebrahimi and V. Mahesh, Postbuckling analysis of piezoelectric multiscale sandwich composite doubly curved porous shallow shells via homotopy perturbation method, Eng. Comp. 37(1) (2021) 561–577. Crossref, Web of ScienceGoogle Scholar
    • 15. M. A. Attia and S. A. Mohamed, Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory, Eng. Comp. 38(1) (2022) 525–554. Crossref, Web of ScienceGoogle Scholar
    • 16. M. Taczała, R. Buczkowski and M. Kleiber, Elastic-plastic buckling and postbuckling finite element analysis of plates using higher-order theory, Int. J. Struct. Stab. Dyn. 21(7) (2021) 2150095. Link, Web of ScienceGoogle Scholar
    • 17. Z. G. Ying, Z. G. Ruan and Y. Q. Ni, Parametrically excited instability of periodic visco-elastomer sandwich plate with supported masses under quadrilateral longitudinal harmonic excitations, Int. J. Struct. Stab. Dyn. 23(5) (2022) 2350050. Link, Web of ScienceGoogle Scholar
    • 18. T. B. Nguyen, J. N. Reddy, J. Rungamornrat, J. Lawongkerd, T. Senjuntichai and V. H. Luong, Nonlinear analysis for bending, buckling and post-buckling of nano-beams with nonlocal and surface energy effects, Int. J. Struct. Stab. Dyn. 19(11) (2019) 1950130. Link, Web of ScienceGoogle Scholar
    • 19. M. F. Oskouie, M. Zargar and R. Ansari, Dynamic snap-through instability of hygro-thermally excited functionally graded porous arches, Int. J. Struct. Stab. Dyn. 23(3) (2023) 2350030. Link, Web of ScienceGoogle Scholar
    • 20. L. Lehao, L. Jing, Z. Tingkai and L. Tiehu, Preparations and properties of porous copper materials for lithium ion battery applications, Chem. Eng. Commun. 203(6) (2016) 707–713. Web of ScienceGoogle Scholar
    • 21. J.-L. Ma, H.-X. Dong and Z.-Z. He, Electrochemically enabled manipulation of gallium-based liquid metals within porous copper, Mater. Horiz. 5(4) (2018) 675–682. Crossref, Web of ScienceGoogle Scholar
    • 22. W. Tian, X. Liang, S. Dang, G. Liu and X. Yang, Visualized experimental study on the phase change heat storage enhanced with metal foam, J. Xi’an Jiaotong Univ. 55(11) (2021) 17–24. Google Scholar
    • 23. D. Wang, A. Yan, Y. Liu, Z. Wu, X. Gan, F. Li, J. Tao, C. Li and J. Yi, Interfacial bonding improvement through nickel decoration on carbon nanotubes in carbon nanotubes/cu composite foams reinforced copper matrix composites, Nanomaterials, 12(15) (2022) 2548. Crossref, Web of ScienceGoogle Scholar
    • 24. J. Ye, K. Zhou, M. Yan, D. Zhai, Q. Xu, D. Zhang and Y. Zhang, Pressure sensing properties of porous piezoelectric ceramics, J. Chin. Ceram. Soc. 51(3) (2023) 738–749. Google Scholar
    • 25. D. Chen, J. Yang and S. Kitipornchai, Elastic buckling and static bending of shear deformable functionally graded porous beam, Compos. Struct. 133 (2015) 54–61. Crossref, Web of ScienceGoogle Scholar
    • 26. K. Gao, Q. Huang, S. Kitipornchai and J. Yang, Nonlinear dynamic buckling of functionally graded porous beams, Mech. Adv. Mater. Struct. 28(4) (2021) 418–429. Crossref, Web of ScienceGoogle Scholar
    • 27. N. M. Faleh, R. A. Ahmed and R. M. Fenjan, On vibrations of porous FG nanoshells, Int. J. Eng. Sci. 133 (2018) 1–14. Crossref, Web of ScienceGoogle Scholar
    • 28. T. Cuong-Le, K. D. Nguyen, N. Nguyen-Trong, S. Khatir, H. Nguyen-Xuan and M. Abdel-Wahab, A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA, Compos. Struct. 259 (2021) 113216. Crossref, Web of ScienceGoogle Scholar
    • 29. E. Arshid, H. Arshid, S. Amir and S. B. Mousavi, Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory, Arch. Civ. Mech. Eng. 21 (2021) 6. Crossref, Web of ScienceGoogle Scholar
    • 30. E. Arshid and A. R. Khorshidvand, Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method, Thin-Walled Struct. 125 (2018) 220–233. Crossref, Web of ScienceGoogle Scholar
    • 31. I. A. Abbas and R. Kumar, 2D deformation in initially stressed thermoelastic half-space with voids, Steel Compos. Struct. 20 (2016) 1103–1117. Crossref, Web of ScienceGoogle Scholar
    • 32. I. A. Abbas, Analytical solution for a free vibration of a thermoelastic hollow sphere, Mech. Based Des. Struct. Mach. 43(3) (2015) 265–276. Crossref, Web of ScienceGoogle Scholar
    • 33. I. A. Abbas and A. N. Abdalla, Effects of thermal relaxations on thermoelastic interactions in an infinite orthotropic elastic medium with a cylindrical cavity, Arch. Appl. Mech. 78(4) (2007) 283–293. Crossref, Web of ScienceGoogle Scholar
    • 34. T. Charef, R. Bachir Bouiadjra, M. Sekkal, A. Bachiri, S. Benyoucef, M. M. S. Saleh, A. Tounsi and M. Hussain, Assessing the impact of different foundations on the thermodynamic response of bidirectional FG porous beams, Arab. J. Geosci. 16 (2023) 48. CrossrefGoogle Scholar
    • 35. A. Kabouche, R. Bachir Bouiadjra, A. Bachiri, M. Sekkal, S. Benyoucef, M. M. S. Saleh, A. Tounsi and M. Hussain, Study on the mechanical instability of bidirectional imperfect fg sandwich plates subjected to in-plane loading, Arab. J. Sci. Eng. 47(10) (2022) 13655–13672. Crossref, Web of ScienceGoogle Scholar
    • 36. M. Sekkal, R. Bachir Bouiadjra, S. Benyoucef, A. Tounsi, M. H. Ghazwani and A. Alnujaie, Investigation on static stability of bidirectional FG porous beams exposed to variable axial load, Acta Mech. 234(3) (2022) 1239–1257. Crossref, Web of ScienceGoogle Scholar
    • 37. M. Sekkal, R. B. Bouiadjra, S. Benyoucef, A. Tounsi, M. H. Ghazwani and A. Alnujaie, Effect of material distribution on bending and buckling response of a bidirectional FG beam exposed to a combined transverses and variable axially loads, Mech. Based Des. Struct. Mach. (2023), https://www.tandfonline.com/doi/full/10.1080/15397734.2023.2172032. Crossref, Web of ScienceGoogle Scholar
    • 38. B. Fahsi, R. B. Bouiadjra, A. Mahmoudi, S. Benyoucef and A. Tounsi, Assessing the effects of porosity on the bending, buckling, and vibrations of functionally graded beams resting on an elastic foundation by using a new refined quasi-3D theory, Mech. Compos. Mater. 55(2) (2019) 219–230. Crossref, Web of ScienceGoogle Scholar
    • 39. I. Benaberrahmane, S. Benyoucef, M. Sekkal, M. Mekerbi, R. B. Bouiadjra, M. M. Selim, A. Tounsi and M. Hussain, Investigating of free vibration behavior of bidirectional FG beams resting on variable elastic foundation, Geomech. Eng. 25(5) (2021) 383–394. Web of ScienceGoogle Scholar
    • 40. A. Meksi, S. Benyoucef, M. Sekkal, R. B. Bouiadjra, M. M. Selim, A. Tounsi and M. Hussain, Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading, Steel Compos. Struct. 39(2) (2021) 215–228. Web of ScienceGoogle Scholar
    • 41. C.-S. Chen, H. Wang, C.-C. Yeh and W.-R. Chen, Dynamic instability response of soft core sandwich plates based on higher-order plate theory, Int. J. Struct. Stab. Dyn. 21(9) (2021) 2150118. Link, Web of ScienceGoogle Scholar
    • 42. H. Wu, J. Yang and S. Kitipornchai, Mechanical analysis of functionally graded porous structures: A review, Int. J. Struct. Stab. Dyn. 20(13) (2020) 2041015. Link, Web of ScienceGoogle Scholar
    • 43. H. Safarpour, K. Mohammadi, M. Ghadiri and M. M. Barooti, Effect of porosity on flexural vibration of cnt-reinforced cylindrical shells in thermal environment using GDQM, Int. J. Struct. Stab. Dyn. 18(10) (2018) 1850123. Link, Web of ScienceGoogle Scholar
    • 44. H. S. Naveen Kumar, S. Kattimani, F. D. Marques, T. Nguyen-Thoi and M. Shariati, Geometrically nonlinear study of functionally graded saturated porous plates based on refined shear deformation plate theory and Biot’s theory, Int. J. Struct. Stab. Dyn. 23(2) (2023) 2350013. Link, Web of ScienceGoogle Scholar
    • 45. M. T. Tran and T. C. Le, A nonlocal iga numerical solution for free vibration and buckling analysis of porous sigmoid functionally graded (P-SFGM) nanoplate, Int. J. Struct. Stab. Dyn. 22(16) (2022) 2250193. Link, Web of ScienceGoogle Scholar
    • 46. N. Jiang, T. Yu, Y. Li, T. J. Pirzada and T. J. Marrow, Hygrothermal aging and structural damage of a jute/poly (lactic acid) (PLA) composite observed by X-ray tomography, Comp. Sci. Tech. 173 (2019) 15–23. Crossref, Web of ScienceGoogle Scholar
    • 47. S. Ma, Y. He, L. Hui and L. Xu, Effects of hygrothermal and thermal aging on the low-velocity impact properties of carbon fiber composites, Adv. Compos. Mater. 29(1) (2020) 55–72. Crossref, Web of ScienceGoogle Scholar
    • 48. C. V. Opelt, J. M. F. Paiva, G. M. Cândido and M. C. Rezende, A fractographic study on the effects of hygrothermal conditioning on carbon fiber/epoxy laminates submitted to axial compression, Eng. Fail. Anal. 79 (2017) 342–350. Crossref, Web of ScienceGoogle Scholar
    • 49. A. Parhi, B. N. Singh and S. K. Panda, Nonlinear free vibration analysis of composite conical shell panel with cluster of delamination in hygrothermal environment, Eng. Comp. 37(2) (2021) 1565–1577. Crossref, Web of ScienceGoogle Scholar
    • 50. Y. Feng, Y. He, T. An, R. Cui, Q. Shao and C. Fan, Effect of hygrothermal condition on buckling and post-buckling performance of CCF300/5228A aero composite stiffened panel under axial compression, J. Reinf. Plast. Compos. 34(12) (2015) 989–999. Crossref, Web of ScienceGoogle Scholar
    • 51. M. Biswal, S. K. Sahu and A. V. Asha, Dynamic stability of woven fiber laminated composite shallow shells in hygrothermal environment, Int. J. Struct. Stab. Dyn. 17(8) (2017) 1750084. Link, Web of ScienceGoogle Scholar
    • 52. Y. Jiang, N. Xue, S. Lu and X. Song, Vibration suppression of a cantilevered piezoelectric laminated composite plate subjected to hygrothermal loads, IOP Conf. Ser. Mater. Sci. Eng. 531 (2019) 012035. CrossrefGoogle Scholar
    • 53. S. F. Lu, Y. Jiang, W. Zhang and X. J. Song, Vibration suppression of cantilevered piezoelectric laminated composite rectangular plate subjected to aerodynamic force in hygrothermal environment, Europ. J. Mech. A Solids 83 (2020) 104002. Crossref, Web of ScienceGoogle Scholar
    • 54. M. A. Abazid, The nonlocal strain gradient theory for hygrothermo-electromagnetic effects on buckling, vibration and wave propagation in piezoelectromagnetic nanoplates, Int. J. Appl. Mech. 11(7) (2019) 1950067. Link, Web of ScienceGoogle Scholar
    • 55. T. D. Singha, M. Rout, T. Bandyopadhyay and A. Karmakar, Free vibration analysis of rotating pretwisted composite sandwich conical shells with multiple debonding in hygrothermal environment, Eng. Struct. 204 (2020) 110058. Crossref, Web of ScienceGoogle Scholar
    • 56. F. Moleiro, E. Carrera, G. Li, M. Cinefra and J. N. Reddy, Hygro-thermo-mechanical modelling of multilayered plates: Hybrid composite laminates, fibre metal laminates and sandwich plates, Composites B 177 (2019) 107388. Crossref, Web of ScienceGoogle Scholar
    • 57. I. Benaberrahmane, M. Mekerbi, R. B. Bouiadjra, S. Benyoucef, M. M. Selim, A. Tounsi and M. Hussain, Analytical evaluation of frequencies of bidirectional FG thick beams in thermal environment and resting on different foundation, Struct. Eng. Mech. 80(4) (2021) 365–375. Web of ScienceGoogle Scholar
    • 58. I. A. Abbas, A.-E.-N. N. Abdalla, F. S. Alzahrani and M. Spagnuolo, Wave propagation in a generalized thermoelastic plate using eigenvalue approach, J. Therm. Stresses 39(11) (2016) 1367–1377. Crossref, Web of ScienceGoogle Scholar
    • 59. I. A. Abbas, A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation, Sadhana 36 (2011) 411–423. Crossref, Web of ScienceGoogle Scholar
    • 60. A. Hobiny and I. Abbas, A GN model on photothermal interactions in a two-dimensions semiconductor half space, Results Phys. 15 (2019) 102588. Crossref, Web of ScienceGoogle Scholar
    • 61. A. Ghanmi and I. A. Abbas, An analytical study on the fractional transient heating within the skin tissue during the thermal therapy, J. Therm. Biol. 82 (2019) 229–233. Crossref, Web of ScienceGoogle Scholar
    • 62. Y. Wang, W. Hong and J. Smitt, Bending and vibration analysis of the FG circular nanoplates subjected to hygro-thermo-electrical loading based on nonlocal strain gradient theory, Int. J. Struct. Stab. Dyn. 23(2) (2023) 2350017. Link, Web of ScienceGoogle Scholar
    • 63. X.-Y. Zhang and X.-F. Li, Hygrothermoelastic damping of beam resonators with non-Fourier and non-Fick effects, Thin-Walled Struct. 168 (2021) 108283. Crossref, Web of ScienceGoogle Scholar
    • 64. D. W. Hahn and M. N. Ozisik, Heat Conduction, 3rd edn. (John Wiley & Sons, Inc., New York, 2012). CrossrefGoogle Scholar
    • 65. R. W. Balluffi, S. M. Allen and W. C. Carter, Kinetics of Materials (John Wiley & Sons, Inc., New York, 2005). CrossrefGoogle Scholar
    • 66. S. Sahmani, M. M. Aghdam and T. Rabczuk, Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory, Compos. Struct. 186 (2018) 68–78. Crossref, Web of ScienceGoogle Scholar
    • 67. J. Yang, D. Chen and S. Kitipornchai, Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method, Compos. Struct. 193 (2018) 281–294. Crossref, Web of ScienceGoogle Scholar
    • 68. C. M. Wang, J. N. Reddy and K. H. Lee, Shear Deformable Beams and Plates Relationships with Classical Solutions (Elsevier Ltd, Amsterdam, 2000). Google Scholar
    • 69. Q. Zhang and H. Liu, Nonlinear Thermo-mechanical response of bi-directional functionally graded porous beams with initial geometrical imperfection, Int. J. Appl. Mech. 14(2) (2022) 2250006. Link, Web of ScienceGoogle Scholar
    • 70. C. W. Bert, Continuous methods, in Encyclopedia of Vibration, ed. S. Braun (Elsevier, Oxford, 2001), pp. 286–294. CrossrefGoogle Scholar
    • 71. Y. Xing and B. Liu, High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain, Int. J. Numer. Methods Eng. 80(13) (2009) 1718–1742. Crossref, Web of ScienceGoogle Scholar
    • 72. Y. Xing, B. Liu and G. Liu, A differential quadrature finite element method, Int. J. Appl. Mech. 2(1) (2010) 207–227. Link, Web of ScienceGoogle Scholar
    • 73. M. Alakel Abazid, 2D magnetic field effect on the thermal buckling of metal foam nanoplates reinforced with FG-GPLs lying on Pasternak foundation in humid environment, Europ. Phys. J. Plus 135(11) (2020) 910. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Remember to check out the structures