World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

An intrinsic volume metric for the class of convex bodies in n

    https://doi.org/10.1142/S0219199723500062Cited by:1 (Source: Crossref)

    A new intrinsic volume metric is introduced for the class of convex bodies in n. As an application, an inequality is proved for the asymptotic best approximation of the Euclidean unit ball by arbitrarily positioned polytopes with a restricted number of vertices under this metric. This result improves the best known estimate, and shows that dropping the restriction that the polytope is contained in the ball or vice versa improves the estimate by at least a factor of dimension. The same phenomenon has already been observed in the special cases of volume, surface area and mean width approximation of the ball.

    AMSC: 52A20, 52A22, 52A27, 52A39, 52B11

    References

    • 1. F. Affentranger, The convex hull of random points with spherically symmetric distributions, Rend. Sem. Mat. Univ. Politec. Torino 49 (1991) 359–383. Google Scholar
    • 2. I. Bárány, F. Fodor and V. Vígh, Intrinsic volumes of inscribed random polytopes in smooth convex bodies, Adv. in Appl. Probab. 42 (2010) 605–619. Crossref, Web of ScienceGoogle Scholar
    • 3. F. Besau, S. Hoehner and G. Kur, Intrinsic and dual volume deviations of convex bodies and polytopes, Int. Math. Res. Not. 22 (2021) 17456–17513. CrossrefGoogle Scholar
    • 4. K. J. Böröczky, F. Fodor and D. Hug, Intrinsic volumes of random polytopes with vertices on the boundary of a convex body, Trans. Amer. Math. Soc. 365 (2013) 785–809. Crossref, Web of ScienceGoogle Scholar
    • 5. K. J. Böröczky, L. M. Hoffmann and D. Hug, Expectation of intrinsic volumes of random polytopes, Period. Math. Hungar. 57 (2008) 143–164. Crossref, Web of ScienceGoogle Scholar
    • 6. S.-S. Chern, On the kinematic formula in integral geometry, J. Math. Mech. 16 (1966) 101–118. Google Scholar
    • 7. A. Florian, On a metric for the class of compact convex sets, Geom. Dedicata 30 (1989) 69–80. Crossref, Web of ScienceGoogle Scholar
    • 8. R. J. Gardner, Geometric Tomography, Encyclopedia of Mathematics and its Applications, Vol. 58 (Cambridge University Press, 2006). CrossrefGoogle Scholar
    • 9. S. Glasauer and P. M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies III, Forum Math. 9 (1997) 383–404. Crossref, Web of ScienceGoogle Scholar
    • 10. H. Groemer, On the symmetric difference metric for convex bodies, Beiträge Algebra Geom. 41 (2000) 107–114. Google Scholar
    • 11. J. Grote, C. Thäle and E. Werner, Surface area deviation between smooth convex bodies and polytopes, Adv. in Appl. Math. 129 (2021) 102218. Crossref, Web of ScienceGoogle Scholar
    • 12. J. Grote and E. Werner, Approximation of smooth convex bodies by random polytopes, Electron. J. Probab. 23 (2018) 1–21. Crossref, Web of ScienceGoogle Scholar
    • 13. P. M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies II, Forum Math. 5 (1993) 521–538. Google Scholar
    • 14. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (Springer, Berlin, 1957). CrossrefGoogle Scholar
    • 15. S. Hoehner and G. Kur, A concentration inequality for random polytopes, Dirichlet–Voronoi tiling numbers and the geometric balls and bins problem, Discrete Comput. Geom. 65 (2021) 730–763. Crossref, Web of ScienceGoogle Scholar
    • 16. S. Hoehner, B. Li, M. Roysdon and C. Thäle, Asymptotic expected T-functionals of random polytopes with applications to Lp surface areas, preprint (2022), arXiv:2202.01353v2. Google Scholar
    • 17. S. Hoehner, C. Schütt and E. Werner, The surface area deviation of the Euclidean ball and a polytope, J. Theoret. Probab. 31 (2018) 244–267. Crossref, Web of ScienceGoogle Scholar
    • 18. Z. Kabluchko, D. Temesvari and C. Thäle, Expected intrinsic volumes and facet numbers of random beta-polytopes, Math. Nachr. 292 (2019) 79–105. Crossref, Web of ScienceGoogle Scholar
    • 19. D. A. Klain and G.-C. Rota, Introduction to Geometric Probability (Cambridge University Press, 1997). Google Scholar
    • 20. G. Kur, Approximation of the Euclidean ball by polytopes with a restricted number of facets, Studia Math. 251 (2020) 111–133. Crossref, Web of ScienceGoogle Scholar
    • 21. M. Ludwig, Asymptotic approximation of smooth convex bodies by general polytopes, Mathematika 46 (1999) 103–125. Crossref, Web of ScienceGoogle Scholar
    • 22. M. Ludwig, C. Schütt and E. M. Werner, Approximation of the Euclidean ball by polytopes, Studia Math. 173 (2006) 1–18. Crossref, Web of ScienceGoogle Scholar
    • 23. E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975) 531–538. Crossref, Web of ScienceGoogle Scholar
    • 24. A. L. G. Mandolesi, Blade products and angles between subspaces, Adv. Appl. Clifford Algebras 31 (2021) 69. Crossref, Web of ScienceGoogle Scholar
    • 25. R. E. Miles, Isotropic random simplices, Adv. in Appl. Probab. 3 (1971) 353–382. CrossrefGoogle Scholar
    • 26. M. Reitzner, Random points on the boundary of smooth convex bodies, Trans. Amer. Math. Soc. 354 (2002) 2243–2278. Crossref, Web of ScienceGoogle Scholar
    • 27. L. A. Santaló, Integral Geometry and Geometric Probability (Cambridge University Press, Cambridge, 2004). CrossrefGoogle Scholar
    • 28. R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and its Applications, 2nd edn. (Cambridge University Press, 2013). CrossrefGoogle Scholar
    • 29. R. Schneider and W. Weil, Stochastic and Integral Geometry (Springer, Berlin, 2008). CrossrefGoogle Scholar
    • 30. C. Schütt and E. Werner, Polytopes with vertices chosen randomly from the boundary of a convex body, in Geometric Aspects of Functional Analysis: Israel Seminar 2001–2002, Lecture Notes in Mathematics, Vol. 1807 (Springer, Berlin, Heidelberg, 2003), pp. 241–422. CrossrefGoogle Scholar
    • 31. G. C. Shephard and R. J. Webster, Metrics for sets of convex bodies, Mathematika 12 (1965) 73–88. Crossref, Web of ScienceGoogle Scholar
    • 32. R. A. Vitale, Lp metrics for compact, convex sets, J. Approx. Theory 45 (1985) 280–287. Crossref, Web of ScienceGoogle Scholar
    • 33. J. G. Wendel, Note on the gamma function, Amer. Math. Monthly 55 (1948) 563–564. CrossrefGoogle Scholar