Note on the -logarithmic Sobolev and -Talagrand inequalities on Carnot groups
Abstract
In the setting of Carnot groups, we prove the -logarithmic Sobolev inequality for probability measures as a function of the Carnot–Carathéodory distance. As an application, we use the Hamilton–Jacobi equation in the setting of Carnot groups to prove the -Talagrand inequality and hypercontractivity.
References
- 1. , Sur les inégalités de Sobolev logarithmiques,
Panoramas et Synthéses , Vol. 10 (Société Mathématique de France, 2000). Google Scholar - 2. ,
Diffusions hypercontractive , in Séminaire de Probabilités, XIX,Lecture Notes in Mathematics , Vol. 1123 (Springer, Berlin, 1985), pp. 177–206. Crossref, Google Scholar - 3. , The Hopf–Lax formula in Carnot groups: a control theoretic approach, Calc. Variations Partial Differential Equations 49(3–4) (2014) 1379–1414, https://doi.org/10.1007/s00526-013-0627-3. Crossref, Web of Science, Google Scholar
- 4. , Functional Inequalities and Hamilton–Jacobi Equations in Geodesic Spaces (Springer Science+Business Media B.V., 2011). Google Scholar
- 5. , Hypercontractivity of Hamilton–Jacobi equations, J. Math. Pures Appl. 80 (2001) 669–696. Crossref, Web of Science, Google Scholar
- 6. , Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal. 163 (1999) 1–28. Crossref, Web of Science, Google Scholar
- 7. , From Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10(5) (2000) 1028–1052. Crossref, Web of Science, Google Scholar
- 8. , Entropy bounds and isoperimetry, Mem. Amer. Math. Soc. 176(829) (2005) 1–69. Web of Science, Google Scholar
- 9. , Stratified Lie Groups and Potential Theory for their Sub-Laplacians,
Springer Monographs in Mathematics (Springer, 2007). Google Scholar - 10. , Coercive inequalities and U-bounds on step-two Carnot groups, Potential Anal. (2021) 1–24, https://doi.org/10.1007/s11118-021-09979-0. Web of Science, Google Scholar
- 11. E. Bou Dagher and B. Zegarliński, Coercive inequalities on Carnot groups: Taming singularities, preprint (2021), arXiv:2105.03922 [math.FA]. Google Scholar
- 12. , Coercive inequalities in higher-dimensional anisotropic Heisenberg group, Anal. Math. Phys. 12(3) (2022) 1–33, https://doi.org/10.1007/s13324-021-00609-x. Google Scholar
- 13. , An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem,
Progress in Mathematics , Vol. 259 (Birkhäuser Verlag, Basel, 2007), xvi+223 pp. Google Scholar - 14. , A note on Talagrand’s transportation inequality and logarithmic Sobolev inequality, Probab. Theory Relat. Fields 148 (2010) 285-304, https://doi.org/10.1007/s00440-009-0231-9. Crossref, Web of Science, Google Scholar
- 15. , Metric Hopf–Lax formula with semicontinuous data, Discrete Contin. Dyn. Syst. 17(4) (2007) 713–729. Crossref, Web of Science, Google Scholar
- 16. , A characterization of dimension free concentration in terms of transportation inequalities, Ann. Probab. 37(6) (2009) 2480–2498. Crossref, Web of Science, Google Scholar
- 17. , From concentration to logarithmic Sobolev and Poincaré inequalities, J. Funct. Anal. 260(5) (2010) 1491–1522. Crossref, Web of Science, Google Scholar
- 18. ,
Carnot–Carathéodory spaces seen from within , in Sub-Riemannian Geometry,Progress in Mathematics , Vol. 144 (Birkhäuser, Basel, 1996), pp. 79–323. Crossref, Google Scholar - 19. , Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975) 1061–1083. Crossref, Web of Science, Google Scholar
- 20. , Coercive inequalities on metric measure spaces, J. Funct. Anal. 258 (2010) 814–851. Crossref, Web of Science, Google Scholar
- 21. J. Inglis, Coercive inequalities for generators of Hörmander type, Doctor of Philosophy of the University of London and the Diploma of Imperial College, Department of Mathematics Imperial College (2010). Google Scholar
- 22. , The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53(2) (1986) 503-523. Crossref, Web of Science, Google Scholar
- 23. , A primer on Carnot groups: homogeneous groups, Carnot–Carathéodory spaces, and regularity of their isometries, Anal. Geom. Metr. Spaces 5 (2017) 116–137. Crossref, Web of Science, Google Scholar
- 24. ,
Concentration of measure and logarithmic Sobolev inequalities , in Séminaire de Probabilités XXXIII,Lecture Notes in Mathematics , Vol. 1709 (Springer-Verlag, Berlin, 1999), pp. 120–216. Crossref, Google Scholar - 25. , The Concentration of Measure Phenomenon (American Mathematical Society, Providence, 2001). Google Scholar
- 26. , Hamilton–Jacobi semigroup on length spaces and applications, J. Math. Pures Appl. (9) 88(3) (2007) 219–229. Crossref, Google Scholar
- 27. , A simple proof of the blowing-up lemma, IEEE Trans. Inform. Theory 32 (1986) 445–446. Crossref, Web of Science, Google Scholar
- 28. , Bounding d-distance by informational divergence: a method to prove measure concentration, Ann. Probab. 24 (1996) 857–866. Crossref, Web of Science, Google Scholar
- 29. , The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001) 101–174. Crossref, Web of Science, Google Scholar
- 30. , Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000) 361–400. Crossref, Web of Science, Google Scholar
- 31. , Lusin approximation and horizontal curves in Carnot groups, Rev. Mat. Iberoamericana 32 (2014) 1423–1444, https://doi.org/10.4171/RMI/924. Crossref, Web of Science, Google Scholar
- 32. , Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton University Press, Princeton, New Jersey, 1993). Google Scholar
- 33. , Transportation cost for Gaussian and other product measures, Geom. Funct. Anal. 6 (1996) 587–600. Crossref, Web of Science, Google Scholar