World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Note on the q-logarithmic Sobolev and p-Talagrand inequalities on Carnot groups

    https://doi.org/10.1142/S0219199722500705Cited by:3 (Source: Crossref)

    In the setting of Carnot groups, we prove the q-logarithmic Sobolev inequality for probability measures as a function of the Carnot–Carathéodory distance. As an application, we use the Hamilton–Jacobi equation in the setting of Carnot groups to prove the p-Talagrand inequality and hypercontractivity.

    AMSC: 22E30, 26D10, 39B62

    References

    • 1. C. Ané, S. Blachére, D. Chafaí, P. Fougéres, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthéses, Vol. 10 (Société Mathématique de France, 2000). Google Scholar
    • 2. D. Bakry and M. Émery, Diffusions hypercontractive, in Séminaire de Probabilités, XIX, Lecture Notes in Mathematics, Vol. 1123 (Springer, Berlin, 1985), pp. 177–206. CrossrefGoogle Scholar
    • 3. Z. M. Balogh, A. Calogero and R. Pini, The Hopf–Lax formula in Carnot groups: a control theoretic approach, Calc. Variations Partial Differential Equations 49(3–4) (2014) 1379–1414, https://doi.org/10.1007/s00526-013-0627-3. Crossref, Web of ScienceGoogle Scholar
    • 4. Z. M. Balogh, A. Engulatov, L. Hunzinker, O. E. Maasalo, Functional Inequalities and Hamilton–Jacobi Equations in Geodesic Spaces (Springer Science+Business Media B.V., 2011). Google Scholar
    • 5. S. Bobkov, I. Gentil and M. Ledoux, Hypercontractivity of Hamilton–Jacobi equations, J. Math. Pures Appl. 80 (2001) 669–696. Crossref, Web of ScienceGoogle Scholar
    • 6. S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal. 163 (1999) 1–28. Crossref, Web of ScienceGoogle Scholar
    • 7. S. Bobkov and M. Ledoux, From Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10(5) (2000) 1028–1052. Crossref, Web of ScienceGoogle Scholar
    • 8. S. Bobkov and B. Zegarliński, Entropy bounds and isoperimetry, Mem. Amer. Math. Soc. 176(829) (2005) 1–69. Web of ScienceGoogle Scholar
    • 9. A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer Monographs in Mathematics (Springer, 2007). Google Scholar
    • 10. E. Bou Dagher and B. Zegarliński, Coercive inequalities and U-bounds on step-two Carnot groups, Potential Anal. (2021) 1–24, https://doi.org/10.1007/s11118-021-09979-0. Web of ScienceGoogle Scholar
    • 11. E. Bou Dagher and B. Zegarliński, Coercive inequalities on Carnot groups: Taming singularities, preprint (2021), arXiv:2105.03922 [math.FA]. Google Scholar
    • 12. E. Bou Dagher and B. Zegarliński, Coercive inequalities in higher-dimensional anisotropic Heisenberg group, Anal. Math. Phys. 12(3) (2022) 1–33, https://doi.org/10.1007/s13324-021-00609-x. Google Scholar
    • 13. L. Capogna, D. Danielli, S. D. Pauls and J. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Progress in Mathematics, Vol. 259 (Birkhäuser Verlag, Basel, 2007), xvi+223 pp. Google Scholar
    • 14. P. Cattiaux, A. Guillin and L. M. Wu, A note on Talagrand’s transportation inequality and logarithmic Sobolev inequality, Probab. Theory Relat. Fields 148 (2010) 285-304, https://doi.org/10.1007/s00440-009-0231-9. Crossref, Web of ScienceGoogle Scholar
    • 15. F. Dragoni, Metric Hopf–Lax formula with semicontinuous data, Discrete Contin. Dyn. Syst. 17(4) (2007) 713–729. Crossref, Web of ScienceGoogle Scholar
    • 16. N. Gozlan, A characterization of dimension free concentration in terms of transportation inequalities, Ann. Probab. 37(6) (2009) 2480–2498. Crossref, Web of ScienceGoogle Scholar
    • 17. N. Gozlan, C. Roberto and P. M. Samson, From concentration to logarithmic Sobolev and Poincaré inequalities, J. Funct. Anal. 260(5) (2010) 1491–1522. Crossref, Web of ScienceGoogle Scholar
    • 18. M. Gromov, Carnot–Carathéodory spaces seen from within, in Sub-Riemannian Geometry, Progress in Mathematics, Vol. 144 (Birkhäuser, Basel, 1996), pp. 79–323. CrossrefGoogle Scholar
    • 19. L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975) 1061–1083. Crossref, Web of ScienceGoogle Scholar
    • 20. W. Hebisch and B. Zegarliński, Coercive inequalities on metric measure spaces, J. Funct. Anal. 258 (2010) 814–851. Crossref, Web of ScienceGoogle Scholar
    • 21. J. Inglis, Coercive inequalities for generators of Hörmander type, Doctor of Philosophy of the University of London and the Diploma of Imperial College, Department of Mathematics Imperial College (2010). Google Scholar
    • 22. J. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53(2) (1986) 503-523. Crossref, Web of ScienceGoogle Scholar
    • 23. E. Le Donne, A primer on Carnot groups: homogeneous groups, Carnot–Carathéodory spaces, and regularity of their isometries, Anal. Geom. Metr. Spaces 5 (2017) 116–137. Crossref, Web of ScienceGoogle Scholar
    • 24. M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, in Séminaire de Probabilités XXXIII, Lecture Notes in Mathematics, Vol. 1709 (Springer-Verlag, Berlin, 1999), pp. 120–216. CrossrefGoogle Scholar
    • 25. M. Ledoux, The Concentration of Measure Phenomenon (American Mathematical Society, Providence, 2001). Google Scholar
    • 26. J. Lott and C. Villani, Hamilton–Jacobi semigroup on length spaces and applications, J. Math. Pures Appl. (9) 88(3) (2007) 219–229. CrossrefGoogle Scholar
    • 27. K. Marton, A simple proof of the blowing-up lemma, IEEE Trans. Inform. Theory 32 (1986) 445–446. Crossref, Web of ScienceGoogle Scholar
    • 28. K. Marton, Bounding d-distance by informational divergence: a method to prove measure concentration, Ann. Probab. 24 (1996) 857–866. Crossref, Web of ScienceGoogle Scholar
    • 29. F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001) 101–174. Crossref, Web of ScienceGoogle Scholar
    • 30. F. Otto and C. Villani, Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000) 361–400. Crossref, Web of ScienceGoogle Scholar
    • 31. G. Speight, Lusin approximation and horizontal curves in Carnot groups, Rev. Mat. Iberoamericana 32 (2014) 1423–1444, https://doi.org/10.4171/RMI/924. Crossref, Web of ScienceGoogle Scholar
    • 32. E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton University Press, Princeton, New Jersey, 1993). Google Scholar
    • 33. M. Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal. 6 (1996) 587–600. Crossref, Web of ScienceGoogle Scholar