A Brezis–Oswald approach for mixed local and nonlocal operators
Abstract
In this paper, we provide necessary and sufficient conditions for the existence of a unique positive weak solution for some sublinear Dirichlet problems driven by the sum of a quasilinear local and a nonlocal operator, i.e.
References
- 1. , A Picone’s identity for the -Laplacian and applications, Nonlinear Anal. 32 (1998) 819–830. Crossref, Web of Science, Google Scholar
- 2. , Lipschitz regularity of solutions for mixed integro-differential equations, J. Differential Equations 252(11) (2012) 6012–6060. Crossref, Web of Science, Google Scholar
- 3. , Second-order elliptic integro-differential equations: Viscosity solutions’ theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3) (2008) 567–585. Crossref, Web of Science, Google Scholar
- 4. , Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. R. Soc. Edinb. Sect. A 151(5) (2021) 1611–1641. Crossref, Web of Science, Google Scholar
- 5. , Mixed local and nonlocal elliptic operators: Regularity and maximum principles, Comm. Partial Differential Equations 47(3) (2022) 585–629. Crossref, Web of Science, Google Scholar
- 6. S. Biagi, S. Dipierro, E. Valdinoci and E. Vecchi, A quantitative Faber–Krahn inequality for some mixed local and nonlocal operators, to appear in J. Anal. Math. Google Scholar
- 7. , Necessary condition in a Brezis–Oswald-type problem for mixed local and nonlocal operators, Appl. Math. Lett. 132 (2022) 108177. Crossref, Web of Science, Google Scholar
- 8. , Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J. 37 (2014) 769–799. Crossref, Web of Science, Google Scholar
- 9. , Optimal solvability for a nonlocal problem at critical growth, J. Differential Equations 264 (2018) 2242–2269. Crossref, Web of Science, Google Scholar
- 10. , Functional Analysis, Sobolev Spaces and Partial Differential Equations,
Universitext (Springer, New York, 2011). Crossref, Google Scholar - 11. , Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986) 55–64. Crossref, Web of Science, Google Scholar
- 12. , A system of local/nonlocal -Laplacians: The eigenvalue problem and its asymptotic limit as , Asymptot. Anal. 128(2) (2022) 149–181. Web of Science, Google Scholar
- 13. , A limiting problem for local/nonlocal -Laplacians with concave-convex nonlinearities, Z. Angew. Math. Phys. 71 (2020) 191. Crossref, Web of Science, Google Scholar
- 14. , Local behavior of fractional -minimizers, Ann. Inst. H. Poincaré Anal. Non Linaire 33(5) (2016) 1279–1299. Crossref, Web of Science, Google Scholar
- 15. , Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136(5) (2012) 521–573. Crossref, Web of Science, Google Scholar
- 16. , Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math. 305(12) (1987) 521–524. Google Scholar
- 17. , Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal. 128(4) (2022) 571–594. Web of Science, Google Scholar
- 18. S. Dipierro, E. Proietti Lippi and E. Valdinoci, (Non)local logistic equations with Neumann conditions, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire. Google Scholar
- 19. , The Brezis–Oswald result for quasilinear Robin problems, Adv. Nonlinear Stud. 16(3) (2016) 603–622. Crossref, Web of Science, Google Scholar
- 20. , Fractional -eigenvalues, Riv. Math. Univ. Parma (N.S.) 5 (2014) 373–386. Google Scholar
- 21. , On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, Trans. Amer. Math. Soc. 375(8) (2022) 5393–5423. Web of Science, Google Scholar
- 22. , Direct Methods in the Calculus of Variations (World Scientific Publishing Co., Inc., River Edge, NJ, 2003). Link, Google Scholar
- 23. A. Iannizzotto and D. Mugnai, Optimal solvability for the fractional p-Laplacian with Dirichlet conditions, preprint (2022), arXiv:2206.08685v2. Google Scholar
- 24. , A First Course in Sobolev Space,
Graduate Studies in Mathematics , Vol. 181, 2nd edn. (American Mathematical Society, Providence, RI, 2017). Crossref, Google Scholar - 25. , Simplicity of principal eigenvalue for -Laplace operator with singular indefinite weight, Arch. Math. (Basel) 86 (2006) 79–89. Crossref, Web of Science, Google Scholar
- 26. , Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems (Springer, New York, 2014). Crossref, Google Scholar
- 27. , Towards a Brezis–Oswald-type result for fractional problems with Robin boundary conditions, Calc. Var. Partial Differential Equations 59(2) (2020) 25 pp. Crossref, Web of Science, Google Scholar
- 28. , Neumann fractional p-Laplacian: Eigenvalues and existence results, Nonlinear Anal. 188 (2019) 455–474. Crossref, Web of Science, Google Scholar
- 29. , The Maximum Principle,
Progress in Nonlinear Differential Equations and their Applications , Vol. 73 (Birkhäuser Verlag, Basel, 2007). Crossref, Google Scholar - 30. , Variational methods for non-local operators of elliptic, type, Discrete Contin. Dyn. Syst. 33(5) (2013) 2105–2137. Crossref, Web of Science, Google Scholar