World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Symmetric solutions for a 2D critical Dirac equation

    https://doi.org/10.1142/S021919972150019XCited by:3 (Source: Crossref)

    In this paper, we show the existence of infinitely many symmetric solutions for a cubic Dirac equation in two dimensions, which appears as effective model in systems related to honeycomb structures. Such equation is critical for the Sobolev embedding and solutions are found by variational methods. Moreover, we also prove smoothness and exponential decay at infinity.

    AMSC: 35Q40, 35B33, 35A15

    References

    • [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, Vol. 55 (Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964). Google Scholar
    • [2] B. Ammann, The smallest Dirac eigenvalue in a spin-conformal class and CMC immersions, Comm. Anal. Geom. 17(2009) 429–479. Crossref, Web of ScienceGoogle Scholar
    • [3] B. Ammann, J.-F. Grosjean, E. Humbert and B. Morel, A spinorial analogue of Aubin’s inequality, Math. Z. 260 (2008) 127–151. Crossref, Web of ScienceGoogle Scholar
    • [4] B. Ammann, E. Humbert and B. Morel, Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds, Comm. Anal. Geom. 14 (2006) 163–182. Crossref, Web of ScienceGoogle Scholar
    • [5] J. Arbunich and C. Sparber, Rigorous derivation of nonlinear Dirac equations for wave propagation in honeycomb structures, J. Math. Phys. 59 (2018), Article ID: 011509, 18 pp. Crossref, Web of ScienceGoogle Scholar
    • [6] T. Bartsch and T. Xu, A spinorial analogue of the Brezis–Nirenberg theorem involving the critical Sobolev exponent (2018); arXiv:1810.05548. Google Scholar
    • [7] W. Borrelli, Stationary solutions for the 2D critical Dirac equation with Kerr nonlinearity, J. Differential Equations 263 (2017) 7941–7964. Crossref, Web of ScienceGoogle Scholar
    • [8] W. Borrelli, Weakly localized states for nonlinear Dirac equations, Calc. Var. Partial Differential Equations 57 (2018) 57:155. Crossref, Web of ScienceGoogle Scholar
    • [9] W. Borrelli and R. L. Frank, Sharp decay estimates for critical Dirac equations, Trans. Amer. Math. Soc. 373 (2020) 2045–2070. Crossref, Web of ScienceGoogle Scholar
    • [10] W. Borrelli and A. Maalaoui, Some properties of Dirac–Einstein bubbles, J. Geom. Anal. (2020). https://doi.org/10.1007/s12220-020-00503-1 Web of ScienceGoogle Scholar
    • [11] W. Borrelli, A. Malchiodi and R. Wu, Ground state Dirac bubbles and Killing spinors, Commun. Math. Phys. (2021). https://doi.org/10.1007/s00220-021-04013-1 Crossref, Web of ScienceGoogle Scholar
    • [12] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983) 486–490. Crossref, Web of ScienceGoogle Scholar
    • [13] B. Cassano, Sharp exponential decay for solutions of the stationary perturbed Dirac equation, Commun. Contemp. Math.. https://doi.org/10.1142/S0219199720500789 Web of ScienceGoogle Scholar
    • [14] Y. Ding and B. Ruf, Solutions of a nonlinear Dirac equation with external fields, Arch. Ration. Mech. Anal. 190 (2008) 57–82. Crossref, Web of ScienceGoogle Scholar
    • [15] Y. Ding and J. Wei, Stationary states of nonlinear Dirac equations with general potentials, Rev. Math. Phys. 20 (2008) 1007–1032. Link, Web of ScienceGoogle Scholar
    • [16] M. J. Esteban, M. Lewin and E. Séré, Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc. (N.S.) 45 (2008) 535–593. Crossref, Web of ScienceGoogle Scholar
    • [17] M. J. Esteban and E. Séré, Stationary states of the nonlinear Dirac equation: A variational approach, Comm. Math. Phys. 171 (1995) 323–350. Crossref, Web of ScienceGoogle Scholar
    • [18] C. L. Fefferman and M. I. Weinstein, Honeycomb lattice potentials and dirac points, J. Amer. Math. Soc. 25 (2012) 1169–1220. Crossref, Web of ScienceGoogle Scholar
    • [19] C. L. Fefferman and M. I. Weinsten, Waves in honeycomb structures, Journées équations aux dérivées partielles (2012), https://doi.org/10.5802/jedp.95. CrossrefGoogle Scholar
    • [20] C. L. Fefferman and M. I. Weinsten, Wave packets in honeycomb structures and two-dimensional Dirac equations, Comm. Math. Phys. 326 (2014) 251–286. Crossref, Web of ScienceGoogle Scholar
    • [21] N. Grosse, On a conformal invariant of the Dirac operator on noncompact manifolds, Ann. Global Anal. Geom. 30 (2006) 407–416. Crossref, Web of ScienceGoogle Scholar
    • [22] N. Grosse, Solutions of the equation of a spinorial Yamabe-type problem on manifolds of bounded geometry, Comm. Partial Differential Equations 37 (2012) 58–76. Crossref, Web of ScienceGoogle Scholar
    • [23] T. Isobe, Nonlinear Dirac equations with critical nonlinearities on compact Spin manifolds, J. Funct. Anal. 260 (2011) 253–307. Crossref, Web of ScienceGoogle Scholar
    • [24] E. Jannelli and S. Solimini, Concentration estimates for critical problems, Ric. Mat. 48 (1999) 233–257. Papers in memory of Ennio De Giorgi (Italian). Google Scholar
    • [25] E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, 2nd edn. (American Mathematical Society, Providence, RI, 2001). CrossrefGoogle Scholar
    • [26] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 109–145. Crossref, Web of ScienceGoogle Scholar
    • [27] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223–283. Crossref, Web of ScienceGoogle Scholar
    • [28] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985) 145–201. CrossrefGoogle Scholar
    • [29] A. Maalaoui, Infinitely many solutions for the spinorial Yamabe problem on the round sphere, NoDEA Nonlinear Differential Equations Appl. 23 (2016), Article ID: 25, 14. Crossref, Web of ScienceGoogle Scholar
    • [30] A. Maalaoui and V. Martino, Characterization of the Palais–Smale sequences for the conformal Dirac–Einstein problem and applications, J. Differential Equations 266 (2019) 2493–2541. Crossref, Web of ScienceGoogle Scholar
    • [31] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, Vol. 74 (Springer-Verlag, New York, 1989). CrossrefGoogle Scholar
    • [32] G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations 50 (2014) 799–829. Crossref, Web of ScienceGoogle Scholar
    • [33] S. Raulot, A Sobolev-like inequality for the Dirac operator, J. Funct. Anal. 256 (2009) 1588–1617. Crossref, Web of ScienceGoogle Scholar
    • [34] M. Struwe, Variational Methods, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics Results in Mathematics and Related Areas, 3rd Series, A Series of Modern Surveys in Mathematics, Applications to nonlinear partial differential equations and Hamiltonian systems, Vol. 34, 4th edn. (Springer-Verlag, Berlin, 2008). Google Scholar
    • [35] B. Thaller, The Dirac Equation, Texts and Monographs in Physics (Springer-Verlag, Berlin, 1992). CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Be inspired by these NEW Mathematics books for inspirations & latest information in your research area!