World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

On matrix-valued Gabor frames over locally compact abelian groups

    https://doi.org/10.1142/S0219025723500236Cited by:1 (Source: Crossref)

    In this paper, we study Gabor frames in the matrix-valued signal space L2(G,n×n), where G is a locally compact abelian group which is metrizable and σ-compact, and n is a positive integer. First, we give sufficient conditions on scalars in an infinite combination of vectors (from a given matrix-valued Gabor frame) to constitute a new frame for the space L2(G,n×n). This generalizes a result due to Aldroubi. Second, we discuss frame conditions for finite sums of matrix-valued Gabor frames. Sufficient conditions for finite sums of matrix-valued Gabor frames in terms of frame bounds are established. It is shown that the sum of images of matrix-valued Gabor frames under bounded linear operators acting on L2(G,n×n) constitute a frame for the space L2(G,n×n) provided operators are adjointable with respect to the matrix-valued inner product and satisfy a majorization. Finally, we show that matrix-valued Gabor frames are stable under small perturbations.

    Communicated by Uwe Franz

    AMSC: 42C15, 42C30, 42C40

    References

    • 1. O. Christensen , An Introduction to Frames and Riesz Bases, 2nd edn. (Birkhäuser, New York, 2016). CrossrefGoogle Scholar
    • 2. K. Gröchenig , Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001). CrossrefGoogle Scholar
    • 3. C. Heil , A Basis Theory Primer, Expanded edn. (Birkhäuser, New York, 2011). CrossrefGoogle Scholar
    • 4. A. J. E. M. Janssen , Duality and biorthogonality for Weyl–Heisenberg frames, J. Fourier Anal. Appl. 1(4) (1995) 403–436. CrossrefGoogle Scholar
    • 5. L. K. Vashisht and H. K. Malhotra , Discrete vector-valued nonuniform Gabor frames, Bull. Sci. Math. 178 (2022) 103145. Crossref, Web of ScienceGoogle Scholar
    • 6. R. M. Young , An Introduction to Nonharmonic Fourier Series (Academic Press, New York, 1980). Google Scholar
    • 7. R. J. Duffin and A. C. Schaeffer , A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952) 341–366. Crossref, Web of ScienceGoogle Scholar
    • 8. D. Gabor , Theory of communication, J. Inst. Elect. Eng. 93 (1946) 429–457. Google Scholar
    • 9. I. Daubechies, A. Grossmann and Y. Meyer , Painless nonorthogonal expansions, J. Math. Phys. 27 (1986) 1271–1283. Crossref, Web of ScienceGoogle Scholar
    • 10. A. Aldroubi , Portraits of frames, Proc. Amer. Math. Soc. 123(6) (1995) 1661–1668. Crossref, Web of ScienceGoogle Scholar
    • 11. D.-X. Ding , Generalized continuous frames constructed by using an iterated function system, J. Geom. Phys. 61 (2011) 1045–1050. Crossref, Web of ScienceGoogle Scholar
    • 12. D. Jindal, U. K. Sinha and G. Verma , Multivariate Gabor frames for operators in matrix-valued signal spaces over locally compact abelian groups, Int. J. Wavelets Multiresolut. Inf. Process. 19(2) (2021) 1–24. Link, Web of ScienceGoogle Scholar
    • 13. A. Krivoshein, V. Protasov and M. Skopina , Multivariate Wavelet Frames (Springer, Singapore, 2016). Google Scholar
    • 14. I. Ya. Novikov, V. Yu. Protasov and M. A. Skopina , Wavelet Theory (Amer. Math. Soc., 2011). CrossrefGoogle Scholar
    • 15. L. K. Vashisht , Banach frames generated by compact operators associated with a boundary value problem, TWMS J. Pure Appl. Math. 6(2) (2015) 254–258. Google Scholar
    • 16. L. K. Vashisht and Deepshikha , Weaving properties of generalized continuous frames generated by an iterated function system, J. Geom. Phys. 110 (2016) 282–295. Crossref, Web of ScienceGoogle Scholar
    • 17. A. S. Antolín and R. A. Zalik , Matrix-valued wavelets and multiresolution analysis, J. Appl. Funct. Anal. 7(1–2) (2012) 13–25. Google Scholar
    • 18. X. G. Xia and B. W. Suter , Vector-valued wavelets and vector filter banks, IEEE Trans. Signal Process. 44(3) (1996) 508–518. Crossref, Web of ScienceGoogle Scholar
    • 19. Jyoti and L. K. Vashisht , On WH-packets of matrix-malued wave packet frames in L2(d, s×r), Int. J. Wavelets Multiresolut. Inf. Process. 16(3) (2018) 1850022. Link, Web of ScienceGoogle Scholar
    • 20. Jyoti, Deepshikha, L. K. Vashisht and G. Verma , Sums of matrix-valued wave packet frames in L2(d, s×r), Glas. Mat. Ser. III 53(1) (2018) 153–177. Crossref, Web of ScienceGoogle Scholar
    • 21. Jyoti and L. K. Vashisht , 𝒦-Matrix-valued wave packet frames in L2(d, s×r), Math. Phys. Anal. Geom. 21(3) (2018) 1–21. Web of ScienceGoogle Scholar
    • 22. Jyoti and L. K. Vashisht , On matrix-valued wave packet frames in L2(d, s×r), Anal. Math. Phys. 10(4) (2020) 66. Crossref, Web of ScienceGoogle Scholar
    • 23. Jyoti, L. K. Vashisht and U. K. Sinha , Matrix-valued frames over LCA groups for operators, Filomat 37(28), (2023) 9543–9559. Web of ScienceGoogle Scholar
    • 24. D. Jindal and L. K. Vashisht , Matrix-valued nonstationary frames associated with the Weyl–Heisenberg Group and extended affine group, Int. J. Wavelets Multiresolut. Inf. Process. (2023), https://doi.org/10.1142/S0219691323500224. Link, Web of ScienceGoogle Scholar
    • 25. D. Jindal and L. K. Vashisht, Sums of frames from the Weyl–Heisenberg group and applications to frame algorithm, arXiv:2306.09493. Google Scholar
    • 26. H. Heuser , Functional Analysis (John Wiley, New York, 1982). Google Scholar
    • 27. G. B. Folland , A Course in Abstract Harmonic Analysis, 2nd edn. (CRC Press, 2015). Google Scholar
    • 28. S. J. Favier and R. A. Zalik , On the stability of frames and Riesz bases, Appl. Comput. Harmon. Anal. 2(2) (1995) 160–173. Crossref, Web of ScienceGoogle Scholar