ABRASIVE FLOW FINISHING OF FDM PRINTED EXTRUSION DIE INSERT PATTERN USING NOVEL AFM FIXTURE WITH MANDREL GUIDE
Abstract
The staircase/stair-stepping effect causes wrapping, shrinkage, and surface roughness in additively manufactured (AM) parts. Consequently, abrasive flow finishing (AFF) or abrasive flow machining (AFM) may be employed to improve the AM part surface finish. This study developed an environmentally friendly AFM media using rice husk ash as base material, waste vegetable oil as a liquid synthesizer, and natural additives, i.e. glycerin. The new newly developed rice husk ash-based AFM media (HSAFM) characterization was done using Fourier Transform Infrared (FTIR) spectroscopic method and thermogravimetric analysis (TGA). AFM medium viscosity was optimized using a Taguchi design (). These FDM-printed extrusions die inserts were finished using optimized AFM media in a one-way AFM system. A new AFM fixture with a mandrel guide was developed to direct media flow inside the die cavity to ensure uniform finishing. Experimental research has been done on finishing the FDM-printed extrusion die insert pattern using the Box–Behnken Design (BBD)-based experimental design of the response surface methodology (RSM) technique. The surface roughness Ra28.16 m was improved by 96% with the following process parameters: media viscosity of 60 Pa/s, the layer thickness of 0.3, and 90 min of finishing time.
References
- 1. , Adv. Mater. Process. Technol. 8 (2022) 1901. Google Scholar
- 2. , Adv. Mater. Process. Technol. 8 (2022) 828. Google Scholar
- 3. , Mater. Manuf. Process. 36 (2021) 1524. Crossref, Web of Science, Google Scholar
- 4. , Mater. Today, Proc. 44 (2021) 2623. Crossref, Google Scholar
- 5. , Mater. Today, Proc. 44 (2021) 17. Crossref, Google Scholar
- 6. , Mater. Today, Proc. 44 (2021) 12. Crossref, Google Scholar
- 7. , Advances in Materials and Processing Technologies 3(4) (2017) 490. Crossref, Google Scholar
- 8. , Mater. Today, Proc. 4 (2017) 7365. Crossref, Google Scholar
- 9. , Mater. Today, Proc. 44 (2021) 2188. Crossref, Google Scholar
- 10. , Mater. Today, Proc. 26 (2020) 2458. Crossref, Google Scholar
- 11. , Proc. Inst. Mech. Eng. B, J. Eng. Manuf. 231 (2017) 2302. Crossref, Web of Science, Google Scholar
- 12. , Mater. Manufact. Process. 32 (2017) 581. Crossref, Web of Science, Google Scholar
- 13. , J. Manuf. Process. 64 (2021) 1434. Crossref, Web of Science, Google Scholar
- 14. , J. Comput. Appl. Res. Mech. Eng. 12 (2022) 41. Google Scholar
- 15. , The study of polishing and equipment of abrasive flow, 2010 Int. Conf. Mechanic Automation and Control Engineering, IEEE, 2010. Google Scholar
- 16. , Proc. Inst. Mech. Eng. B, J. Eng. Manuf. 223 (2009) 809. Crossref, Web of Science, Google Scholar
- 17. , Mater. Today, Proc. 50 (2022) 2037. Crossref, Google Scholar
- 18. , Mater. Today, Proc. 48 (2022) 1892. Crossref, Google Scholar
- 19. , Procedia CIRP 102 (2021) 1. Crossref, Google Scholar
- 20. , Int. J. Autom. Technol. 12 (2018) 883. Crossref, Google Scholar
- 21. , Procedia CIRP 8 (2013) 351. Crossref, Google Scholar
- 22. , Rapid Prototyp. J. 28 (2022) 161. Crossref, Web of Science, Google Scholar
- 23. , Mater. Today, Proc. 56 (2022) 1369. Crossref, Google Scholar
- 24. , Mater. Today, Proc. 62 (2022) 7554. Crossref, Google Scholar
- 25. , J. Eng. Res. (2021), https://doi.org/10.36909/jer.13643. Google Scholar
- 26. , Int. J. Interact. Des. Manuf. (2022) 1, https://doi.org/10.1007/s12008-022-00982-2. Google Scholar
- 27. , J. Phys., Conf. Ser. 1696 (2020) 012028. Crossref, Google Scholar
- 28. , Int. J. Adv. Manuf. Technol. 71 (2014) 141. Crossref, Web of Science, Google Scholar
- 29. , Finishing of micro-channels using abrasive flow machining, Proc. Int. Conf. Research and Innovations in Mechanical Engineering: ICRIME-2013, Springer, India, 2014. Crossref, Google Scholar
- 30. , J. Inst. Eng. (India) C 97 (2016) 55. Crossref, Google Scholar
- 31. , Int. J. Adv. Manufact. Technol. 85 (2016) 2189. Crossref, Web of Science, Google Scholar
- 32. , Mater. Manufact. Process. 24 (2009) 1467. Crossref, Web of Science, Google Scholar
- 33. , Mach. Sci. Technol. 5 (2001) 151. Crossref, Web of Science, Google Scholar
- 34. , Procedia CIRP 1 (2012) 419. Crossref, Google Scholar
- 35. , Int. J. Prec. Technol. 5 (2015) 185. Crossref, Google Scholar
- 36. , Developing alternative polymer abrasive gels for abrasive flow finishing process, Proc. 5th Int. 26th All India Manufacturing Technology, Design and Research Conf. (AIMTDR 2014),
Guwahati, India , 2014. Google Scholar - 37. ,
Experimental investigation on AFF of FDM printed pattern for extrusion die insert , in Advances in Micro and Nano Manufacturing and Surface Engineering (Springer, Singapore, 2022), pp. 199–211. Google Scholar - 38. , Proc. Inst. Mech. Eng. B J. Eng. Manuf. 220 (2006) 1775. Crossref, Web of Science, Google Scholar
- 39. , Int. J. Adv. Manuf. Technol. 112 (2021) 619. Crossref, Web of Science, Google Scholar
- 40. , Metal Sci. Heat Treat. 62 (2020) 161. Crossref, Web of Science, ADS, Google Scholar
- 41. , Int. J. Adv. Manuf. Technol. 116 (2021) 1509. Crossref, Web of Science, Google Scholar
- 42. , Mater. Manuf. Process. 37 (2022) 437 Crossref, Web of Science, Google Scholar
- 43. , Int. J. Adv. Manuf. Technol. 112 (2021) 3215. Crossref, Web of Science, Google Scholar
- 44. , J. Mater. Eng. Perf. 30 (2021) 1545. Crossref, Web of Science, Google Scholar
- 45. , Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci. 23 (2020) 363. Crossref, Web of Science, Google Scholar
- 46. , Mater. Manuf. Process. 29 (2014) 153. Crossref, Web of Science, Google Scholar
- 47. , Mater. Manuf. Process. 30 (2015) 93. Crossref, Web of Science, Google Scholar
- 48. , Int. J. Manuf. Technol. Manage. 28 (2014) 114. Crossref, Google Scholar
- 49. , CMES-Comput. Model. Eng. Sci. 135 (2023) 917. Web of Science, Google Scholar
- 50. , Mater. Today, Proc. 56 (2022) 1947. Crossref, Google Scholar
- 51. , Mater. Today, Proc. 56 (2022) 1939. Crossref, Google Scholar
- 52. , Metals 12 (2022) 1328. Crossref, Web of Science, Google Scholar
- 53. , Mater. Today, Proc. 56 (2022) 2016. Crossref, Google Scholar
- 54. A. W. Hashmi, H. S. Mali and A. Meena, Rapid Prototyp. J. ahead-of-print (2022). Google Scholar
- 55. , Mater. Today, Proc. (2021), https://doi.org/10.1016/j.matpr.2021.04.223. Google Scholar
- 56. ,
The surface quality improvement methods for FDM printed parts: a review , in Fused Deposition Modeling Based 3D Printing (Springer, Cham, 2021), pp. 167–194. Crossref, Google Scholar - 57. , Adv. Mater. Process. Technol. 8 (2022) 4524. Google Scholar
- 58. , J. Mater. Res. Technol. (2023) 4866. Crossref, Google Scholar
- 59. , Afr. J. Food Sci. 4 (2010) 418. Google Scholar
- 60. , Mater. Res. 13 (2010) 185. Crossref, Web of Science, Google Scholar
- 61. , J. Therm. Anal. Calorim. 138 (2019) 1801. Crossref, Web of Science, Google Scholar
- 62. , J. Manuf. Sci. Eng. 145 (2023) 041002. Crossref, Web of Science, Google Scholar
- 63. , Int. J. Adv. Manuf. Technol. 85 (2016) 2179. Crossref, Web of Science, Google Scholar
- 64. , Int. J. Adv. Manuf. Technol. 100 (2019) 1165. Crossref, Web of Science, Google Scholar
- 65. , Mater. Manuf. Process. 34 (2019) 232. Crossref, Web of Science, Google Scholar
- 66. , Add. Manuf. 61 (2023) 103290. Google Scholar
- 67. , Designs and Analysis of Experiments–Chapter 5 Supplemental Text Material (John Wiley & Sons, New York, 2006). Available from: http://www.wiley.com/college/montgomery, Accessed October 25 (2004). Google Scholar
- 68. R. Bansal, Improving dimensional accuracy of fused deposition modelling (FDM) parts using response surface methodology, Dissertation, National Institute of Technology Rourkela (2011). Google Scholar
- 69. , Rapid Prototyp. J. 24 (2018) 593. Crossref, Web of Science, Google Scholar
- 70. , Rapid Prototyp. J. 27 (2021) 1398. Crossref, Web of Science, Google Scholar
- 71. , Eng. Sci. Technol. Int. J. 17 (2014) 227. Google Scholar