World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Research ArticleNo Access

3D RENDERING OF THE QUATERNION MANDELBROT SET WITH MEMORY

    https://doi.org/10.1142/S0218348X24500610Cited by:0 (Source: Crossref)

    In this paper, we explore the quaternion equivalent of the Mandelbrot set equipped with memory and apply various visualization techniques to the resulting 4-dimensional geometry. Three memory functions have been considered, two that apply a weighted sum to only the previous two terms and one that performs a weighted sum of all previous terms of the series. The visualization includes one or two cutting planes for dimensional reduction to either 3 or 2 dimensions, respectively, as well as employing an intersection with a half space to trim the 3D solids in order to reveal the interiors. Using various metrics, we quantify the effect of each memory function on the structure of the quaternion Mandelbrot set.

    References

    • 1. G. Pastor, M. Romera, G. Álvarez, D. Arroyo and F. Montoya , On periodic and chaotic regions in the Mandelbrot set, Chaos, Solitons Fractals 32(1) (2007) 15–25. Crossref, Web of ScienceGoogle Scholar
    • 2. R. Rojas , A tutorial on efficient computer graphic representations of the Mandelbrot set, Comput. Graph. 15(1) (1991) 91–100. Crossref, Web of ScienceGoogle Scholar
    • 3. P. Petek , On the quaternionic Julia sets, in Chaotic Dynamics: Theory and Practice, ed. T. Bountis (Springer US, Boston, MA, 1992), pp. 53–58. CrossrefGoogle Scholar
    • 4. J. Gomatam, J. Doyle, B. Steves and I. McFarlane , Generalization of the Mandelbrot set: Quaternionic quadratic maps, Chaos, Solitons Fractals 5(6) (1995) 971–986. Crossref, Web of ScienceGoogle Scholar
    • 5. J. Gomatam, J. Doyle and B. Steves , Quaternionic generalisation of the Mandelbrot set, in From Newton to Chaos: Modern Techniques for Understanding and Coping with Chaos in N-Body Dynamical Systems, eds. A. E. Roy and B. A. Steves (Springer US, Boston, MA, 1995), pp. 557–562. CrossrefGoogle Scholar
    • 6. S. Bedding and K. Briggs , Iteration of quaternion functions, Am. Math. Monthly 103(8) (1996) 654–664. Crossref, Web of ScienceGoogle Scholar
    • 7. S. Nakane , Dynamics of a family of quadratic maps in the quaternion space, Int. J. Bifurc. Chaos 15(8) (2005) 2535–2543. Link, Web of ScienceGoogle Scholar
    • 8. C. A. Pickover , Visualization of quaternion slices, Image Vis. Comput. 6(4) (1988) 235–237. Crossref, Web of ScienceGoogle Scholar
    • 9. A. Norton , Generation and display of geometric fractals in 3-D, in Proceedings of the 9th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’82 (Association for Computing Machinery, New York, NY, USA, 1982), pp. 61–67. CrossrefGoogle Scholar
    • 10. A. Norton , Julia sets in the quaternions, Comput. Graph. 13(2) (1989) 267–278. Crossref, Web of ScienceGoogle Scholar
    • 11. J. A. R. Holbrook , Quaternionic astroids and starfields, Appl. Math. Notes 8(2) (1983) 1–34. Google Scholar
    • 12. J. A. R. Holbrook , Quaternionic Fatou–Julia sets, Ann. Sci. Math. Québec 11(1) (1987) 79–94. Google Scholar
    • 13. M. Abbas, H. Iqbal and M. De la Sen , Generation of Julia and Mandelbrot sets via fixed points, Symmetry 12(1) (2020) 86. Crossref, Web of ScienceGoogle Scholar
    • 14. C. Zou, A. A. Shahid, A. Tassaddiq, A. Khan and M. Ahmad , Mandelbrot sets and Julia sets in Picard–Mann orbit, IEEE Access 8 (2020) 64411–64421. Crossref, Web of ScienceGoogle Scholar
    • 15. A. A. Shahid, W. Nazeer and K. Gdawiec , The Picard–Mann iteration with s-convexity in the generation of Mandelbrot and Julia sets, Monatsh. Math. 195(4) (2021) 565–584. Crossref, Web of ScienceGoogle Scholar
    • 16. S. Kumari, K. Gdawiec, A. Nandal, M. Postolache and R. Chugh , A novel approach to generate Mandelbrot sets, Julia sets and biomorphs via viscosity approximation method, Chaos, Solitons Fractals 163 (2022) 112540. Crossref, Web of ScienceGoogle Scholar
    • 17. S. Kumari, K. Gdawiec, A. Nandal, N. Kumar and R. Chugh , An application of viscosity approximation type iterative method in the generation of Mandelbrot and Julia fractals, Aequ. Math. 97(2) (2023) 257–278. Crossref, Web of ScienceGoogle Scholar
    • 18. C. Beck , Physical meaning for Mandelbrot and Julia sets, Physica D 125(3) (1999) 171–182. Crossref, Web of ScienceGoogle Scholar
    • 19. R. Alonso-Sanz , On quaternion maps with memory, Complex Syst. 24(3) (2015) 223–232. CrossrefGoogle Scholar
    • 20. Y. Sun, P. Li and Z. Lu , Generalized quaternion M sets and Julia sets perturbed by dynamical noises, Nonlinear Dyn. 82(1) (2015) 143–156. Crossref, Web of ScienceGoogle Scholar
    • 21. R. Alonso-Sanz , A glimpse of complex maps with memory, Complex Syst. 21(4) (2013) 269–282. CrossrefGoogle Scholar
    • 22. R. Alonso-Sanz , The Mandelbrot set with partial memory, Complex Syst. 23(3) (2014) 227–238. CrossrefGoogle Scholar
    • 23. R. Alonso-Sanz , On complex maps with delay memory, Fractals 23(3) (2015) 1550027. Link, Web of ScienceGoogle Scholar
    • 24. A. Fulinski and A. S. Kleczkowski , Nonlinear maps with memory, Phys. Scr. 35(2) (1987) 119. Crossref, Web of ScienceGoogle Scholar
    • 25. R. Alonso-Sanz , Discrete Systems with Memory (World Scientific, 2011). LinkGoogle Scholar
    • 26. J. C. Hart, D. J. Sandin and L. H. Kauffman , Ray tracing deterministic 3-D fractals, ACM SIGGRAPH Comput. Graph. 23(3) (1989) 289–296. CrossrefGoogle Scholar
    • 27. V. da Silva, T. Novello, H. Lopes and L. Velho , Real-time rendering of complex fractals, in Ray Tracing Gems II: Next Generation Real-Time Rendering with DXR, Vulkan, and OptiX, eds. A. Marrs, P. Shirley and I. Wald (Apress, Berkeley, CA, 2021), pp. 529–544. CrossrefGoogle Scholar
    • 28. Q. Zhang, R. Eagleson and T. M. Peters , Volume visualization: A technical overview with a focus on medical applications, J. Digital Imag. 24 (2011) 640–664. Crossref, Web of ScienceGoogle Scholar
    • 29. S. Fidan , The use of micro-CT in materials science and aerospace engineering, in Micro-Computed Tomography (micro-CT) in Medicine and Engineering, ed. K. Orhan (Springer International Publishing, Cham, 2020), pp. 267–276. CrossrefGoogle Scholar
    • 30. C. Ma and J. Rokne , 3D seismic volume visualization, in Integrated Image and Graphics Technologies, eds. D. D. Zhang, M. Kamel and G. Baciu (Springer US, Boston, MA, 2004), pp. 241–262. CrossrefGoogle Scholar
    • 31. A. Limaye , Drishti: A volume exploration and presentation tool, in Developments in X-Ray Tomography VIII, Vol. 8506, ed. S. R. Stock (International Society for Optics and Photonics, SPIE, 2012), p. 85060X. CrossrefGoogle Scholar
    • 32. P. Bourke , Visualising volumetric fractals, GSTF Int. J. Comput. 5(2) (2017) 58–62. Google Scholar
    • 33. R. Fariello, P. Bourke and J. P. Lopes , Calculating Julia fractal sets in any embedding dimension, Fractals, 31(1) (2023) 2350018. Link, Web of ScienceGoogle Scholar