Gravitizing the quantum
Abstract
We discuss a new approach to the problem of quantum gravity in which the quantum mechanical structures that are traditionally fixed, such as the Fubini–Study metric in the Hilbert space of states, become dynamical and so implement the idea of gravitizing the quantum. In particular, in this formulation of quantum gravity the quantum geometry is still consistent with the principles of unitarity and also captures fundamental aspects of (quantum) gravity, such as topology change. Furthermore, we address specific ways of testing this new approach to quantum gravity by utilizing multipath interference and optical lattice atomic clocks.
This essay received an Honorable Mention in the 2022 Essay Competition of the Gravity Research Foundation.
References
- 1. A. Addazi et al., arXiv:2111.05659 [hep-ph]. Google Scholar
- 2. , Phys. Rev. Lett. 119 (2017) 240401, arXiv:1707.06050 [quant-ph]. Crossref, Web of Science, ADS, Google Scholar
- 3. , Phys. Rev. Lett. 119 (2017) 240402, arXiv:1707.06036 [quant-ph]. Crossref, Web of Science, ADS, Google Scholar
- 4. P. Berglund, L. Freidel, T. Hübsch, J. Kowalski-Glikman, R. G. Leigh, D. Mattingly and D. Minic, arXiv:2202.06890 [hep-th]. Google Scholar
- 5. , Rep. Prog. Phys. 56 (1993) 791. Crossref, Web of Science, ADS, Google Scholar
- 6. , Found. Phys. 44 (2014) 557. Crossref, Web of Science, ADS, Google Scholar
- 7. L. Hardy, arXiv:quant-ph/0101012 [quant-ph]; arXiv:gr-qc/0509120 [gr-qc]. Google Scholar
- 8. , Baby universes, in Theoretical Advanced Study Institute in Elementary Particle Physics: Particles, Strings and Supernovae (TASI 88),
Providence, RI, USA , 1988, pp. 315–391. Google Scholar - 9. , Nucl. Phys. B 170 (1980) 283. Crossref, Web of Science, ADS, Google Scholar
- 10. F. Dowker, arXiv:gr-qc/0206020 [gr-qc]. Google Scholar
- 11. , Class. Quantum Grav. 8 (1991) 587. Crossref, Web of Science, ADS, Google Scholar
- 12. , Class. Quantum Grav. 28 (2011) 035006, arXiv:1009.5953 [gr-qc]. Crossref, Web of Science, ADS, Google Scholar
- 13. , Mod. Phys. Lett. A 9 (1994) 3119, arXiv:gr-qc/9401003 [gr-qc]. Link, Web of Science, ADS, Google Scholar
- 14. P. Huber, H. Minakata, D. Minic, R. Pestes and T. Takeuchi, arXiv:2105.14061 [hep-ph]. Google Scholar
- 15. , J. Phys., Conf. Ser. 880 (2017) 1, arXiv:1709.06639 [quant-ph]. Crossref, Google Scholar
- 16. , Science 329 (2010) 418, arXiv:1007.4193 [quant-ph]. Crossref, Web of Science, ADS, Google Scholar
- 17. , New J. Phys. 14 (2012) 113025, arXiv:1207.2321 [quant-ph]. Crossref, Web of Science, Google Scholar
- 18. , Phys. Rev. Lett. 126 (2021) 190401. Crossref, Web of Science, ADS, Google Scholar
- 19. , Phys. Rev. Res. 2 (2020) 012051(R). Crossref, Google Scholar
- 20. , Nucl. Phys. B 268 (1986) 253. Crossref, Web of Science, ADS, Google Scholar
- 21. , Phys. Lett. B 187 (1987) 295. Crossref, Web of Science, ADS, Google Scholar
- 22. , Nucl. Phys. B 390 (1993) 33, arXiv:hep-th/9206084 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 23. J. Polchinski, String Theory (Cambridge University Press, 1998); M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory (Cambridge University Press, 1987). Google Scholar
- 24. , Int. J. Mod. Phys. D 24 (2015) 1544028. Link, Web of Science, ADS, Google Scholar
- 25. , Phys. Rev. D 94 (2016) 104052. Crossref, Web of Science, ADS, Google Scholar
- 26. , Phys. Lett. B 730 (2014) 302. Crossref, Web of Science, ADS, Google Scholar
- 27. , Int. J. Mod. Phys. D 23 (2014) 1442006. Link, Web of Science, ADS, Google Scholar
- 28. , J. High Energy Phys. 06 (2015) 006. Crossref, Web of Science, ADS, Google Scholar
- 29. , J. Phys., Conf. Ser. 804 (2017) 012032. Crossref, Google Scholar
- 30. , Phys. Rev. D 99 (2019) 066011. Crossref, Web of Science, ADS, Google Scholar
- 31. , Int. J. Mod. Phys. A 34 (2019) 1941004. Link, Web of Science, ADS, Google Scholar
- 32. D. Minic, arXiv:2003.00318 [hep-th]. Google Scholar
- 33. , J. High Energy Phys. 09 (2017) 060. Crossref, Web of Science, ADS, Google Scholar
- 34. , Phys. Rev. D 96 (2017) 066003. Crossref, Web of Science, ADS, Google Scholar
- 35. , Int. J. Mod. Phys. D 30 (2021) 2141002, arXiv:2104.00802 [gr-qc]. Link, Web of Science, ADS, Google Scholar
- 36. , Fortschr. Phys. 61 (2013) 873, arXiv:1304.0410 [hep-th]. Crossref, Web of Science, Google Scholar
- 37. , Lett. High Energy Phys. 2021 (2021) 186, arXiv:2010.15610 [hep-th]. Crossref, ADS, Google Scholar
- 38. , New J. Phys. 16 (2014) 123029, arXiv:1403.4147 [quant-ph]. Crossref, Web of Science, Google Scholar
- 39. , Found. Phys. 41 (2011) 396, arXiv:0909.4787v1 [quant-ph]. Crossref, Web of Science, ADS, Google Scholar
- 40. , Phys. Rev. D 68 (2003) 061501, arXiv:hep-th/0305193 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 41. , What is quantum theory of gravity? in 3rd Int. Symp. Quantum Theory and Symmetries (QTS-3),
Cincinnati, OH, USA , 2003, pp. 159–166, arXiv:hep-th/0401028 [hep-th]. Google Scholar - 42. A. Ashtekar and T. A. Schilling, arXiv:gr-qc/9706069 [gr-qc]. Google Scholar
- 43. , Int. J. Mod. Phys. A 22 (2007) 3317, arXiv:0706.2252 [hep-th]. Link, Web of Science, ADS, Google Scholar
- 44. J. Anandan and Y. Aharonov, Phys. Rev. Lett. 65 (1990) 1697; J. Anandan, Found. Phys. 21 (1991) 1265. Google Scholar
- 45. , Nat. Photon. 14 (2020) 411. Crossref, Web of Science, ADS, Google Scholar
You currently do not have access to the full text article. |
---|