Dark matter, dark energy and fundamental acceleration
Abstract
We discuss the existence of an acceleration scale in galaxies and galaxy clusters and its relevance for the nature of dark matter. The presence of the same acceleration scale found at very different length scales, and in very different astrophysical objects, strongly supports the existence of a fundamental acceleration scale governing the observed gravitational physics. We comment on the implications of such a fundamental acceleration scale for constraining cold dark matter models as well as its relevance for structure formation to be explored in future numerical simulations.
This essay received an Honorable Mention in the 2020 Essay Competition of the Gravity Research Foundation.
References
- 1. , Cosmological Physics (Cambridge University Press, 1998). Crossref, Google Scholar
- 2. , Cosmology (Oxford University Press, 2008). Crossref, Google Scholar
- 3. , Galaxy Formation, 2nd edn. (Springer, 2008). Google Scholar
- 4. , Mysteries of Galaxy Formation (Springer Praxis Books, 2010). Google Scholar
- 5. , Astrophys. J. 462 (1996) 563. Crossref, Web of Science, ADS, Google Scholar
- 6. F. Governato et al., Mon. Not. R. Astron. Soc. 374 (2007) 1479, Mon. Not. R. Astron. Soc. 422, (2012) 1231. Google Scholar
- 7. , Phys. Dark Univ. 12 (2016) 56. Crossref, Web of Science, ADS, Google Scholar
- 8. M. Milgrom, Astrophys. J. 270 (1983) 365; 371 (1983); 384 (1983); 306 (1986) 9. Google Scholar
- 9. , Astron. Astrophys. 54 (1977) 661. Web of Science, ADS, Google Scholar
- 10. , The Low Surface Brightness Universe,
Astronomical Society of the Pacific Conference Series , Vol. 170, eds. J. I. Davies, C. Impey and S. Phillipps (San Francisco, California, 1999), pp. 3–8. Google Scholar - 11. , Astrophys. J. 533 (2000) L99. Crossref, Web of Science, ADS, Google Scholar
- 12. , Mon. Not. R. Astron. Soc. 416 (2011) 1936. Crossref, Web of Science, ADS, Google Scholar
- 13. , Mon. Not. R. Astron. Soc. 466 (2017) 4159. Web of Science, ADS, Google Scholar
- 14. , Astron. J. 143 (2012) 40. Crossref, Web of Science, ADS, Google Scholar
- 15. , Astrophys. J. 289 (1985) 81. Crossref, Web of Science, ADS, Google Scholar
- 16. M. Persic and P. Salucci, Astrophys. J. 368 (1991) 60; M. Persic, P. Salucci and F. Stel, Mon. Not. Roy. Astron. Soc. 281 (1996) 27; P. Salucci et al., Mon. Not. R. Astron. Soc. 378 (2007) 41. Google Scholar
- 17. , Phys. Rev. Lett. 117 (2016) 201101. Crossref, Web of Science, ADS, Google Scholar
- 18. , Astron. J. 152 (2016) 157. Crossref, Web of Science, ADS, Google Scholar
- 19. , Astophys. J. 609 (2004) 652. Crossref, Web of Science, ADS, Google Scholar
- 20. P. Salucci, arXiv:1612.08857 [astro-ph.GA]. Google Scholar
- 21. P. Salucci, Found. Phys. 48 (2018) 1517; Astron. Astrophys. Rev. 27 (2019) 2. Google Scholar
- 22. , Astrophys. J. 873 (2019) 106. Crossref, Web of Science, ADS, Google Scholar
- 23. , Astrophys. J. 204 (1976) 668. Crossref, Web of Science, ADS, Google Scholar
- 24. ,
Morphology and dynamics of galaxies , in Saas-Fee Advanced Course, eds. L. Martinet and M. Mayor, Vol. 12 (Observatoire de Geneve, Sauverny, Switzerland, 1982) pp. 113–288. Google Scholar - 25. , Mon. Not. R. Astron. Soc. 396 (2009) 1647. Crossref, Web of Science, ADS, Google Scholar
- 26. , Mon. Not. R. Astron. Soc. 302 (1999) 587. Crossref, Web of Science, ADS, Google Scholar
- 27. , Astrophys. J. 265 (1983) 597. Crossref, Web of Science, ADS, Google Scholar
- 28. , Astrophys. J. 251 (1981) L1. Crossref, Web of Science, ADS, Google Scholar
- 29. , Astron. J. 80 (1975) 427. Crossref, Web of Science, ADS, Google Scholar
- 30. , Astrophys. J. 204 (1976) 73. Crossref, Web of Science, ADS, Google Scholar
- 31. , Mon. Not. R. Astron. Soc. 492 (2020) 4874. Crossref, Web of Science, ADS, Google Scholar
- 32. , Astrophys. J. Lett. 874 (2019) L5. Crossref, Web of Science, ADS, Google Scholar
- 33. , Astrophys. J. Lett. 883 (2019) L33. Crossref, Web of Science, ADS, Google Scholar
- 34. , Astrophys. J. 569 (2002) L19. Crossref, Web of Science, ADS, Google Scholar
- 35. J. F. Navarro et al., Mon. Not. R. Astron. Soc. 471 (2017) 1841; Astrophys. Space Sci. Proc. 56 (2019) 103. Google Scholar
- 36. , Mon. Not. R. Astron. Soc. 498 (2020) 3687, https://doi.org/org/10.1093/mnras/staa2616. Crossref, Web of Science, ADS, Google Scholar
- 37. , Phys. Rev. D 91 (2015) 024022. Crossref, Web of Science, ADS, Google Scholar
- 38. , SciPost Phys. 2 (2017) 016. Crossref, Web of Science, ADS, Google Scholar
- 39. D. Edmonds, D. Farrah, C. M. Ho, D. Minic, Y. J. Ng and T. Takeuchi, Astrophys. J. 793 (2014) 41; Int. J. Mod. Phys. A 32 (2017) 1750108; D. Edmonds, D. Farrah, D. Minic, Y. J. Ng and T. Takeuchi, Int. J. Mod. Phys. D 27 (2017) 1830001; D. Edmonds, D. Minic and T. Takeuchi, in preparation. Google Scholar
- 40. C. M. Ho, D. Minic and Y. J. Ng, Phys. Lett. B 693 (2010) 567; Gen. Relativ. Grav. 43 (2011) 2567 [Int. J. Mod. Phys. D 20 (2011) 2887]; Phys. Rev. D 85 (2012) 104033. Google Scholar
- 41. , Astron. Astrophys. 526 (2011) A105. Crossref, Web of Science, Google Scholar
- 42. , Astrophys. J. 567 (2002) 716. Crossref, Web of Science, ADS, Google Scholar
- 43. , Astrophys. J. 783 (2014) 117. Crossref, Web of Science, ADS, Google Scholar
- 44. G. Meylan and C. Pryor, Structure and Dynamics of Globular Clusters, Astronomical Society of the Pacific Conference Series, Vol. 50, eds. S. Djorgovski and G. Meylan (San Francisco, California, 1993), pp. 31–64, eds. C. Pryor and G. Meylan, ibid, pp. 357–371. Google Scholar
- 45. , Astron. J. 73 (1968) 456. Crossref, Web of Science, ADS, Google Scholar
- 46. R. H. Sanders, Astron. Astrophys. 284 (1994) L31, Astrophys. J. 512 (1999) L23 (1999). Google Scholar
- 47. , Mon. Not. R. Astron. Soc. 407 (2010) 1128. Crossref, Web of Science, ADS, Google Scholar
- 48. R. Duranzo, X. Hernandez, B. Cervantes Sodi and S. F. Sánchez, Astrophys. J. 837 (2017) 179, X. Hernandez and A. J. Lara-D.I., Mon. Not. R. Astron. Soc. 491 (2020) 272. Google Scholar
- 49. , Astron. Astrophys. 629 (2019) L5. Crossref, Web of Science, ADS, Google Scholar
- 50. L. Freidel, R. G. Leigh and D. Minic, Phys. Lett. B 730 (2014) 302; Int. J. Mod. Phys. D 23 (2014) 1442006; J. High Energy Phys. 1506, (2015) 006; Int. J. Mod. Phys. D 24 (2015) 1544028; Phys. Rev. D 94 (2016) 104052; J. Phys. Conf. Ser. 804 (2017) 012032; J. High Energy Phys. 1709 (2017) 060; Phys. Rev. D 96 (2017) 066003; Int. J. Mod. Phys. A 34 (2019) 1941004, L. Freidel, J. Kowalski-Glikman, R. G. Leigh and D. Minic, Phys. Rev. D 99 (2019) 066011. Google Scholar
- 51. P. Berglund, T. Hubsch and D. Minic, Phys. Lett. B 798 (2019) 134950; Int. J. Mod. Phys. D 28, (2019) 1902003; J. High Energy Phys. 1912 (2019) 166; 2019(2020) 166. Google Scholar
- 52. , in Proc. 10th Mathematical Physics Meeting: School and Conf. Modern Mathematical Physics,
9–14 September 2019 , pp. 183–218,Belgrade, Serbia , arXiv:2003.00318 [hep-th]. Google Scholar - 53. , Mon. Not. R. Astron. Soc. 471 (2017) 1088. Crossref, Web of Science, ADS, Google Scholar
You currently do not have access to the full text article. |
---|