World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Multilevel domain uncertainty quantification in computational electromagnetics

    https://doi.org/10.1142/S0218202523500264Cited by:1 (Source: Crossref)

    We continue our study [R. Aylwin, C. Jerez-Hanckes, C. Schwab and J. Zech, Domain uncertainty quantification in computational electromagnetics, SIAM/ASA J. Uncertain. Quant.8 (2020) 301–341] of the numerical approximation of time-harmonic electromagnetic fields for the Maxwell lossy cavity problem for uncertain geometries. We adopt the same affine-parametric shape parametrization framework, mapping the physical domains to a nominal polygonal domain with piecewise smooth maps. The regularity of the pullback solutions on the nominal domain is characterized in piecewise Sobolev spaces. We prove error convergence rates and optimize the algorithmic steering of parameters for edge-element discretizations in the nominal domain combined with: (a) multilevel Monte Carlo sampling, and (b) multilevel, sparse-grid quadrature for computing the expectation of the solutions with respect to uncertain domain ensembles. In addition, we analyze sparse-grid interpolation to compute surrogates of the domain-to-solution mappings. All calculations are performed on the polyhedral nominal domain, which enables the use of standard simplicial finite element meshes. We provide a rigorous fully discrete error analysis and show, in all cases, that dimension-independent algebraic convergence is achieved. For the multilevel sparse-grid quadrature methods, we prove higher order convergence rates free from the so-called curse of dimensionality. Numerical experiments confirm our theoretical results and verify the superiority of the sparse-grid methods.

    Communicated by F. Brezzi

    AMSC: 35A20, 35B30, 32D05, 35Q61

    References

    • 1. G. S. Alberti and Y. Capdeboscq, Elliptic regularity theory applied to time harmonic anisotropic Maxwell’s equations with less than Lipschitz complex coefficients, SIAM J. Math. Anal. 46 (2014) 998–1016. Crossref, Web of ScienceGoogle Scholar
    • 2. R. Aylwin and C. Jerez-Hanckes, The effect of quadrature rules on finite element solutions of Maxwell variational problems, Numer. Math. 147 (2021) 903–936. Crossref, Web of ScienceGoogle Scholar
    • 3. R. Aylwin, C. Jerez-Hanckes, C. Schwab and J. Zech, Domain uncertainty quantification in computational electromagnetics, SIAM/ASA J. Uncertain. Quant. 8 (2020) 301–341. CrossrefGoogle Scholar
    • 4. A. Barth, C. Schwab and N. Zollinger, Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients, Numer. Math. 119 (2011) 123–161. Crossref, Web of ScienceGoogle Scholar
    • 5. V. Barthelmann, E. Novak and K. Ritter, High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math. 12 (2000) 273–288. Crossref, Web of ScienceGoogle Scholar
    • 6. A. Buffa, M. Costabel and D. Sheen, On traces for H(curl,Ω) in Lipschitz domains, J. Math. Anal. Appl. 276 (2002) 845–867. Crossref, Web of ScienceGoogle Scholar
    • 7. A. Buffa and R. Hiptmair, Galerkin boundary element methods for electromagnetic scattering, in Topics in Computational Wave Propagation, Lecture Notes in Computational Science and Engineering, Vol. 31 (Springer, 2003), pp. 83–124. CrossrefGoogle Scholar
    • 8. A. Buffa, R. Hiptmair, T. von Petersdorff and C. Schwab, Boundary element methods for Maxwell transmission problems in Lipschitz domains, Numer. Math. 95 (2003) 459–485. Crossref, Web of ScienceGoogle Scholar
    • 9. M. A. Chkifa, On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection, J. Approx. Theory 166 (2013) 176–200. Crossref, Web of ScienceGoogle Scholar
    • 10. A. Chkifa, A. Cohen and C. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs, J. Found. Comp. Math. 14 (2013) 601–633. Crossref, Web of ScienceGoogle Scholar
    • 11. P. G. Ciarlet, The Finite Element Method for Elliptic Problems (SIAM, 2002). CrossrefGoogle Scholar
    • 12. P. G. Ciarlet and P.-A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, ed. A. Aziz (Academic Press, 1972), pp. 409–474. CrossrefGoogle Scholar
    • 13. P. G. Ciarlet and P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods, Comput. Methods Appl. Mech. Engrg. 1 (1972) 217–249. CrossrefGoogle Scholar
    • 14. K. A. Cliffe, M. B. Giles, R. Scheichl and A. L. Teckentrup, Multilevel monte carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci. 14 (2011) 3. CrossrefGoogle Scholar
    • 15. A. Cohen, C. Schwab and J. Zech, Shape holomorphy of the stationary Navier–Stokes equations, SIAM J. Math. Anal. 50 (2018) 1720–1752. Crossref, Web of ScienceGoogle Scholar
    • 16. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 2nd edn. (Cambridge Univ. Press, 2014). CrossrefGoogle Scholar
    • 17. M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, Advances in Design and Control, Vol. 22, 2nd edn. (SIAM, 2011). CrossrefGoogle Scholar
    • 18. J. Diestel and J. Uhl, Vector Measures (Amer. Math. Soc., 1977). CrossrefGoogle Scholar
    • 19. P. Dular and C. Geuzaine, GetDP reference manual: The documentation for GetDP, a general environment for the treatment of discrete problems, http://getdp.info. Google Scholar
    • 20. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Vol. 159 (Springer Science & Business Media, 2004). CrossrefGoogle Scholar
    • 21. A. Ern and J.-L. Guermond, Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions, Comput. Math. Appl. 75 (2018) 918–932. Crossref, Web of ScienceGoogle Scholar
    • 22. R. N. Gantner, Computational higher-order quasi-monte carlo for random partial differential equations, Ph.D. thesis, ETH Zurich (2017). Google Scholar
    • 23. C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Eng. 79 (2009) 1309–1331. Crossref, Web of ScienceGoogle Scholar
    • 24. R. Hiptmair, L. Scarabosio, C. Schillings and C. Schwab, Large deformation shape uncertainty quantification in acoustic scattering, Adv. Comput. Math. 44 (2018) 1475–1518. Crossref, Web of ScienceGoogle Scholar
    • 25. T. Hytönen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach Spaces. Vol. I. Martingales and Littlewood–Paley Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics Vol. 63 (Springer, 2016). Google Scholar
    • 26. C. Jerez-Hanckes, C. Schwab and J. Zech, Electromagnetic wave scattering by random surfaces: Shape holomorphy, Math. Models Methods Appl. Sci. 27 (2017) 2229–2259. Link, Web of ScienceGoogle Scholar
    • 27. A. Klimke, Uncertainty modeling using fuzzy arithmetic and sparse grids, Ph.D. thesis, Universität Stuttgart (2005). Google Scholar
    • 28. R. Leis, Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien, Math. Z. 106 (1968) 213–224. Crossref, Web of ScienceGoogle Scholar
    • 29. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge Univ. Press, 2000). Google Scholar
    • 30. P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford Univ. Press, 2003). CrossrefGoogle Scholar
    • 31. H. Royden and P. Fitzpatrick, Real Analysis, 4th edn. (Prentice-Hall Inc, 2010). Google Scholar
    • 32. S. A. Sauter and C. Schwab, Boundary Element Methods, Springer Series in Computational Mathematics, Vol. 39 (Springer-Verlag, 2011), translated and expanded from the 2004 German original. CrossrefGoogle Scholar
    • 33. C. Schwab and J. Zech, Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ, Anal. Appl. 17 (2019) 19–55. Link, Web of ScienceGoogle Scholar
    • 34. A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd edn. (John Wiley & Sons, 1980). Google Scholar
    • 35. C. Weber, Regularity theorems for Maxwell’s equations, Math. Methods Appl. Sci. 3 (1981) 523–536. CrossrefGoogle Scholar
    • 36. J. Zech, Sparse-Grid Approximation of High-Dimensional Parametric PDEs, Dissertation, ETH Zürich (2018). Google Scholar
    • 37. J. Zech, D. Dũng and C. Schwab, Multilevel approximation of parametric and stochastic PDEs, Math. Models Methods Appl. Sci. 29 (2019) 1753–1817. Link, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!