World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Model predictive control with random batch methods for a guiding problem

    https://doi.org/10.1142/S0218202521500329Cited by:9 (Source: Crossref)

    We model, simulate and control the guiding problem for a herd of evaders under the action of repulsive drivers. The problem is formulated in an optimal control framework, where the drivers (controls) aim to guide the evaders (states) to a desired region of the Euclidean space. The numerical simulation of such models quickly becomes unfeasible for a large number of interacting agents, as the number of interactions grows O(N2) for N agents. For reducing the computational cost to O(N), we use the Random Batch Method (RBM), which provides a computationally feasible approximation of the dynamics. First, the considered time interval is divided into a number of subintervals. In each subinterval, the RBM randomly divides the set of particles into small subsets (batches), considering only the interactions inside each batch. Due to the averaging effect, the RBM approximation converges to the exact dynamics in the L2-expectation norm as the length of subintervals goes to zero. For this approximated dynamics, the corresponding optimal control can be computed efficiently using a classical gradient descent. The resulting control is not optimal for the original system, but for a reduced RBM model. We therefore adopt a Model Predictive Control (MPC) strategy to handle the error in the dynamics. This leads to a semi-feedback control strategy, where the control is applied only for a short time interval to the original system, and then compute the optimal control for the next time interval with the state of the (controlled) original dynamics. Through numerical experiments we show that the combination of RBM and MPC leads to a significant reduction of the computational cost, preserving the capacity of controlling the overall dynamics.

    Communicated by N. Bellomo

    AMSC: 49M29, 90C59, 93B51

    References

    • 1. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings and M. Diehl , Casadi: A software framework for nonlinear optimization and optimal control, Math. Program. Comput. 11 (2019) 1–36. Crossref, Web of ScienceGoogle Scholar
    • 2. R. Bailo, M. Bongini, J. A. Carrillo and D. Kalise , Optimal consensus control of the Cucker-Smale model, IFAC-PapersOnLine 51 (2018) 1–6. CrossrefGoogle Scholar
    • 3. U. Biccari, D. Ko and E. Zuazua , Dynamics and control for multi-agent networked systems: A finite-difference approach, Math. Models Methods Appl. Sci. 29 (2019) 755–790. Link, Web of ScienceGoogle Scholar
    • 4. M. Bongini, M. Fornasier, O. Junge and B. Scharf , Sparse control of alignment models in high dimension, Netw. Heterog. Media 10 (2015) 647–697. Crossref, Web of ScienceGoogle Scholar
    • 5. M. Bongini, M. Fornasier, F. Rossi and F. Solombrino , Mean-field Pontryagin maximum principle, J. Optim. Theory Appl. 175 (2017) 1–38. Crossref, Web of ScienceGoogle Scholar
    • 6. M. Burger, R. Pinnau, A. Roth, C. Totzeck and O. Tse, Controlling a self-organizing system of individuals guided by a few external agents — particle description and mean-field limit, preprint (2016), arXiv:1610.01325 [math]. Google Scholar
    • 7. M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat , Sparse stabilization and optimal control of the Cucker–Smale model, Math. Control. Relat. Fields 3 (2013) 447–466. Crossref, Web of ScienceGoogle Scholar
    • 8. J. A. Carrillo, Y.-P. Choi, P. B. Mucha and J. Peszek , Sharp conditions to avoid collisions in singular Cucker–Smale interactions, Nonlinear Anal. Real World Appl. 37 (2017) 317–328. Crossref, Web of ScienceGoogle Scholar
    • 9. J. A. Carrillo, Y.-P. Choi, C. Totzeck and O. Tse , An analytical framework for consensus-based global optimization method, Math. Models Methods Appl. Sci. 28 (2018) 1037–1066. Link, Web of ScienceGoogle Scholar
    • 10. J. A. Carrillo, S. Jin, L. Li and Y. Zhu , A consensus-based global optimization method for high dimensional machine learning problems, ESAIM Control Optim. Calc. Var. 27 (2021) S5. Crossref, Web of ScienceGoogle Scholar
    • 11. F. Cucker and J.-G. Dong , Avoiding Collisions in Flocks, IEEE Trans. Automat. Contr. 55 (2010) 1238–1243. Crossref, Web of ScienceGoogle Scholar
    • 12. F. Cucker and S. Smale , Emergent Behavior in Flocks, IEEE Trans. Automat. Contr. 52 (2007) 852–862. Crossref, Web of ScienceGoogle Scholar
    • 13. F. Dorfler and F. Bullo , Synchronization and transient stability in power networks and nonuniform kuramoto oscillators, SIAM J. Control. Optim. 50 (2012) 1616–1642. Crossref, Web of ScienceGoogle Scholar
    • 14. R. Escobedo, A. Ibañez and E. Zuazua , Optimal strategies for driving a mobile agent in a “guidance by repulsion” model, Commun. Nonlinear. Sci. 39 (2016) 58–72. Crossref, Web of ScienceGoogle Scholar
    • 15. J. A. Fax and R. M. Murray , Information flow and cooperative control of vehicle formations, IEEE Trans. Automat. Contr. 49 (2004) 1465–1476. Crossref, Web of ScienceGoogle Scholar
    • 16. S. Gade, A. A. Paranjape and S.-J. Chung , Herding a flock of birds approaching an airport using an unmanned aerial vehicle, in AIAA Guidance, Navigation, and Control Conf. (AIAA SciTech Forum, 2015), 1540. CrossrefGoogle Scholar
    • 17. C. E. García, D. M. Prett and M. Morari , Model predictive control: Theory and practice—A survey, Automatica 25 (1989) 335–348. Crossref, Web of ScienceGoogle Scholar
    • 18. F. Golse , The mean-field limit for the dynamics of large particle systems, J. Équ. Dériv. Partielles 9 (2003) 1–47. Google Scholar
    • 19. L. Grüne and J. Pannek , Nonlinear model predictive control, in Nonlinear Model Predictive Control (Springer, 2017), pp. 45–69. CrossrefGoogle Scholar
    • 20. S.-Y. Ha, S. Jin and D. Kim , Convergence of a first-order consensus-based global optimization algorithm, Math. Models Methods Appl. Sci. 30 (2021) 2417–2444. Link, Web of ScienceGoogle Scholar
    • 21. S.-Y. Ha and J.-G. Liu , A simple proof of the Cucker–Smale flocking dynamics and mean-field limit, Commun. Math. Sci. 7 (2009) 297–325. Crossref, Web of ScienceGoogle Scholar
    • 22. S. Jin, L. Li and J.-G. Liu , Random Batch Methods (RBM) for interacting particle systems, J. Comput. Phys. 400 (2020) 108877. Crossref, Web of ScienceGoogle Scholar
    • 23. D. Ko and E. Zuazua , Asymptotic behavior and control of a “guidance by repulsion” model, Math. Models Methods Appl. Sci. 30 (2020) 765–804. Link, Web of ScienceGoogle Scholar
    • 24. J. M. Lien, O. B. Bayazit, R. T. Sowell, S. Rodriguez and N. M. Amato , Shepherding behaviors, in Proc. IEEE Int. Conf. Robotics and Automation, 2004, ICRA ’04. 2004, Vol. 4 (IEEE, New Orleans, LA, USA, 2004), pp. 4159–4164. CrossrefGoogle Scholar
    • 25. J. Ma and E. M.-K. Lai , Finite-time flocking control of a swarm of Cucker–Smale agents with collision avoidance, in 2017 24th Int. Conf. Mechatronics and Machine Vision in Practice (M2VIP) (IEEE, Auckland, 2017), pp. 1–6. CrossrefGoogle Scholar
    • 26. P. Mhaskar , Robust model predictive control design for fault-tolerant control of process systems, Ind. Eng. Chem. Res. 45 (2006) 8565–8574. Crossref, Web of ScienceGoogle Scholar
    • 27. S. Motsch and E. Tadmor , A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys. 144 (2011) 923–947. Crossref, Web of ScienceGoogle Scholar
    • 28. M. Nikolaou , Model predictive controllers: A critical synthesis of theory and industrial needs, Adv. Chem. Eng. 26 (2001) 131–204. CrossrefGoogle Scholar
    • 29. J. Park, H. J. Kim and S.-Y. Ha , Cucker–Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Contr. 55 (2010) 2617–2623. Crossref, Web of ScienceGoogle Scholar
    • 30. B. Piccoli, N. P. Duteil and E. Trélat , Sparse control of Hegselmann–Krause models: Black hole and declustering, SIAM J. Control. Optim. 57 (2019) 2628–2659. Crossref, Web of ScienceGoogle Scholar
    • 31. R. Pinnau and C. Totzeck , Interacting particles and optimization, PAMM 18 (2018) e201800182. CrossrefGoogle Scholar
    • 32. L. S. Pontryagin , Mathematical Theory of Optimal Processes (Routledge, 2018). CrossrefGoogle Scholar
    • 33. M. Porfiri and M. Di Bernardo , Criteria for global pinning-controllability of complex networks, Automatica 44 (2008) 3100–3106. Crossref, Web of ScienceGoogle Scholar
    • 34. D. M. Prett and C. E. Garcia , Design of robust process controllers, IFAC Proc. 20 (1987) 275–280. CrossrefGoogle Scholar
    • 35. V. Rokhlin , Rapid solution of integral equations of classical potential theory, J. Comput. Phys. 60 (1985) 187–207. Crossref, Web of ScienceGoogle Scholar
    • 36. D. Strömbom, R. P. Mann, A. M. Wilson, S. Hailes, A. J. Morton, D. J. T. Sumpter and A. J. King , Solving the shepherding problem: Heuristics for herding autonomous, interacting agents, J. R. Soc. Interface 11 (2014) 20140719. Crossref, Web of ScienceGoogle Scholar
    • 37. H. G. Tanner, A. Jadbabaie and G. J. Pappas , Flocking in fixed and switching networks, IEEE Trans. Automat. Contr. 52 (2007) 863–868. Crossref, Web of ScienceGoogle Scholar
    • 38. E. Trélat , Contrôle Optimal: Théorie and Applications (Vuibert Paris, 2005). Google Scholar
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!