World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Final size and convergence rate for an epidemic in heterogeneous populations

    https://doi.org/10.1142/S0218202521500251Cited by:11 (Source: Crossref)

    We formulate a general SEIR epidemic model in a heterogeneous population characterized by some trait in a discrete or continuous subset of a space d. The incubation and recovery rates governing the evolution of each homogeneous subpopulation depend upon this trait, and no restriction is assumed on the contact matrix that defines the probability for an individual of a given trait to be infected by an individual with another trait. Our goal is to derive and study the final size equation fulfilled by the limit distribution of the population. We show that this limit exists and satisfies the final size equation. The main contribution of this work is to prove the uniqueness of this solution among the distributions smaller than the initial condition. We also establish that the dominant eigenvalue of the next-generation operator (whose initial value is equal to the basic reproduction number) decreases along every trajectory until a limit smaller than 1. The results are shown to remain valid in the presence of a diffusion term. They generalize previous works corresponding to finite number of traits (including metapopulation models) or to rank 1 contact matrices (modeling e.g. susceptibility or infectivity presenting heterogeneity independently of one another).

    Communicated by N. Bellomo

    AMSC: 35Q92, 35R09, 45C05, 45G15, 92D30

    References

    • 1. R. Aguas, R. M. Corder, J. G. King, G. Goncalves, M. U. Ferreira, M. Gabriela and M. Gomes, Herd immunity thresholds for SARS-CoV-2 estimated from unfolding epidemics, https://doi.org/10.1101/2020.07.23.20160762. Google Scholar
    • 2. V. Andreasen, The final size of an epidemic and its relation to the basic reproduction number, Bull. Math. Biol. 73 (2011) 2305–2321. Crossref, Web of ScienceGoogle Scholar
    • 3. J. Arino and F. Brauer, Pauline van den Driessche, James Watmough, Jianhong Wu, A final size relation for epidemic models, Math. Biosc. Eng. 4 (2007) 159–175. Crossref, Web of ScienceGoogle Scholar
    • 4. N. T. J. Bailey, The Mathematical Theory of Infectious Diseases (Hafner Press, 1975). Google Scholar
    • 5. N. Bellomo, R. Bingham, M. A. J. Chaplain, G. Dosi, G. Forni, D. A. Knopoff, J. Lowengrub, R. Twarock and M. E. Virgillito, A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world, Math. Models Methods Appl. Sci. 30 (2020) 1591–1651. Link, Web of ScienceGoogle Scholar
    • 6. F. Brauer, Age-of-infection and the final size relation, Math. Biosc. Eng. 5 (2008) 681–690. Crossref, Web of ScienceGoogle Scholar
    • 7. T. Britton, F. Ball and P. Trapman, A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2, Science 369 (2020) 846–849. https://doi.org/10.1126/science.abc6810 Crossref, Web of ScienceGoogle Scholar
    • 8. T. Britton, F. Ball and P. Trapman, The disease-induced herd immunity level for COVID-19 is substantially lower than the classical herd immunity level, preprint (2020), arXiv:2005.03085. Google Scholar
    • 9. S. De Lillo, M. Delitala and M. Salvatori, Modelling epidemics and virus mutations by methods of the mathematical kinetic theory for active particles, Math. Models Methods Appl. Sci. 19 (2009) 1405–1425. Link, Web of ScienceGoogle Scholar
    • 10. L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous populations, Commun Math Sci 6 (2008) 729–747. Crossref, Web of ScienceGoogle Scholar
    • 11. L. Di Domenico, G. Pullano, C. E. Sabbatini, P.-Y. Boëlle and V. Colizza, Impact of lockdown on COVID-19 epidemic in Ile-de-France and possible exit strategies, BMC Med. 18 (2020) 240, https://doi.org/10.1186/s12916-020-01698-4. Crossref, Web of ScienceGoogle Scholar
    • 12. O. Diekmann, H. Heesterbeek and J. Anton and J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990) 365–382. Crossref, Web of ScienceGoogle Scholar
    • 13. F. Di Lauro, L. Berthouze, M. D. Dorey, J. C. Miller and I. Z. Kiss, The impact of network properties and mixing on control measures and disease-induced herd immunity in epidemic models: A mean-field model perspective, preprint (2020), arXiv:2007.06975. Google Scholar
    • 14. J. Dolbeault and G. Turinici, Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model, Math. Model. Nat. Phenom. 15 (2020) 36. Crossref, Web of ScienceGoogle Scholar
    • 15. R. Ducasse, Threshold phenomenon and traveling waves for heterogeneous integral equations and epidemic models, preprint (2019), arXiv:1902.01072. Google Scholar
    • 16. R. Ducasse, Qualitative properties of spatial epidemiological models, preprint (2020), arXiv:2005.06781. Google Scholar
    • 17. M. G. M. Gomes, R. M. Corder, J. G. King, K. E. Langwig, C. Souto-Maior, J. Carneiro, G. Goncalves, C. Penha-Goncalves, M. U. Ferreira and R. Aguas, Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold, doi:10.1101/2020.04.27.20081893. Google Scholar
    • 18. P.-E. Jabin and G. Raoul, On selection dynamics for competitive interactions, J. Math. Biol. 63 (2011) 493–517. Crossref, Web of ScienceGoogle Scholar
    • 19. T. Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1972) 135–148. Crossref, Web of ScienceGoogle Scholar
    • 20. G. Katriel, The size of epidemics in populations with heterogeneous susceptibility, J. Math. Biol. 65 (2012) 237–262. Crossref, Web of ScienceGoogle Scholar
    • 21. D. G. Kendall, Discussion of “measles periodicity and community size” by M.S. Bartlett, J. Roy. Stat. Soc. A 120 (1957) 64–76. Google Scholar
    • 22. W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics – I, Proc. Roy. Soc. 115A (1927) 700–721. CrossrefGoogle Scholar
    • 23. M. G. Kreĭn and M. A. Rutman, Linear operators which leave a cone in Banach space invariant, Amer. Math. Soc. Transl. 6 (1950) 199–325. Google Scholar
    • 24. J. Ma and D. J. D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68 (2006) 679–702. Crossref, Web of ScienceGoogle Scholar
    • 25. P. Magal, O. Seydi and G. Webb, Final size of an epidemic for a two-group SIR model, SIAM J. Appl. Math. 76 (2016) 2042–2059. Crossref, Web of ScienceGoogle Scholar
    • 26. J. C. Miller, A Note on the derivation of epidemic final sizes, Bull. Math. Biol. 74 (2012) 2125–2141. Crossref, Web of ScienceGoogle Scholar
    • 27. A. S. Novozhilov, On the spread of epidemics in a closed heterogeneous population, Math. Biosci. 215 (2008) 177–185. Crossref, Web of ScienceGoogle Scholar
    • 28. H. R. Thieme, A model for the spatial spread of an epidemic, J. Math. Biol. 4 (1977) 337–351. Crossref, Web of ScienceGoogle Scholar
    • 29. H. R. Thieme, Mathematics in Population Biology (Woodstock Princeton Univ. Press, 2003). CrossrefGoogle Scholar
    • 30. H. R. Thieme, Distributed susceptibility: A challenge to persistence theory in infectious disease models, Discrete Contin. Dyn. Syst. B 12 (2009) 865–882. Crossref, Web of ScienceGoogle Scholar
    • 31. E. Zeidler, Nonlinear Functional Analysis and its Applications, I: Fixed Point Theorems (Springer-Verlag, 1986). CrossrefGoogle Scholar