World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Sharp discontinuous traveling waves in a hyperbolic Keller–Segel equation

    https://doi.org/10.1142/S0218202521500214Cited by:4 (Source: Crossref)

    In this work, we describe a hyperbolic model with cell–cell repulsion with a dynamics in the population of cells. More precisely, we consider a population of cells producing a field (which we call “pressure”) which induces a motion of the cells following the opposite of the gradient. The field indicates the local density of population and we assume that cells try to avoid crowded areas and prefer locally empty spaces which are far away from the carrying capacity. We analyze the well-posedness property of the associated Cauchy problem on the real line. We start from bounded initial conditions and we consider some invariant properties of the initial conditions such as the continuity, smoothness and monotony. We also describe in detail the behavior of the level sets near the propagating boundary of the solution and we find that an asymptotic jump is formed on the solution for a natural class of initial conditions. Finally, we prove the existence of sharp traveling waves for this model, which are particular solutions traveling at a constant speed, and argue that sharp traveling waves are necessarily discontinuous. This analysis is confirmed by numerical simulations of the PDE problem.

    Communicated by O. Diekmann

    AMSC: 92C17, 35L60, 35D30

    References

    • 1. N. J. Armstrong, K. J. Painter and J. A. Sherratt, A continuum approach to modelling cell–cell adhesion, J. Theoret. Biol. 243 (2006) 98–113. Crossref, Web of ScienceGoogle Scholar
    • 2. D. G. Aronson, Density-dependent interaction-diffusion systems, in Dynamics and Modelling of Reactive Systems, Publication of the Mathematics Research Center, the University of Wisconsin, Vol. 44 (Academic Press, 1980), pp. 161–176. CrossrefGoogle Scholar
    • 3. C. Atkinson, G. E. H. Reuter and C. J. Ridler-Rowe, Traveling wave solution for some nonlinear diffusion equations, SIAM J. Math. Anal. 12 (1981) 880–892. Crossref, Web of ScienceGoogle Scholar
    • 4. D. Balagué, J. A. Carrillo, T. Laurent and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability, Phys. D 260 (2013) 5–25. Crossref, Web of ScienceGoogle Scholar
    • 5. N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives, Math. Models Methods Appl. Sci. 22 (2012) 1130001. Link, Web of ScienceGoogle Scholar
    • 6. M. Burger, R. Fetecau and Y. Huang, Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion, SIAM J. Appl. Dyn. Syst. 13 (2014) 397–424. Crossref, Web of ScienceGoogle Scholar
    • 7. V. Calvez and L. Corrias, The parabolic–parabolic Keller–Segel model in 2, Commun. Math. Sci. 6 (2008) 417–447. Crossref, Web of ScienceGoogle Scholar
    • 8. K. Carrapatoso and S. Mischler, Uniqueness and long time asymptotics for the parabolic–parabolic Keller–Segel equation, Comm. Partial Differential Equations 42 (2017) 291–345. Crossref, Web of ScienceGoogle Scholar
    • 9. J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepčev, Confinement in nonlocal interaction equations, Nonlinear Anal. 75 (2012) 550–558. Crossref, Web of ScienceGoogle Scholar
    • 10. J. A. Carrillo, H. Murakawa, M. Sato, H. Togashi and O. Trush, A population dynamics model of cell–cell adhesion incorporating population pressure and density saturation, J. Theoret. Biol. 474 (2019) 14–24. Crossref, Web of ScienceGoogle Scholar
    • 11. S. Childress, Chemotactic collapse in two dimensions, in Modelling of Patterns in Space and Time, Lecture Notes in Biomathematics, Vol. 55 (Springer, 1984), pp. 61–66. CrossrefGoogle Scholar
    • 12. J. Coville and L. Dupaigne, Propagation speed of travelling fronts in nonlocal reaction–diffusion equations, Nonlinear Anal. 60 (2005) 797–819. Crossref, Web of ScienceGoogle Scholar
    • 13. P. de Mottoni and F. Rothe, A singular perturbation analysis for a reaction–diffusion system describing pattern formation, Stud. Appl. Math. 63 (1980) 227–247. Crossref, Web of ScienceGoogle Scholar
    • 14. A. de Pablo and J. L. Vázquez, Travelling waves and finite propagation in a reaction–diffusion equation, J. Differential Equations 93 (1991) 19–61. Crossref, Web of ScienceGoogle Scholar
    • 15. A. Ducrot, X. Fu and P. Magal, Turing and Turing–Hopf bifurcations for a reaction diffusion equation with nonlocal advection, J. Nonlinear Sci. 28 (2018) 1959–1997. Crossref, Web of ScienceGoogle Scholar
    • 16. A. Ducrot, F. Le Foll, P. Magal, H. Murakawa, J. Pasquier and G. F. Webb, An in vitro cell population dynamics model incorporating cell size, quiescence, and contact inhibition, Math. Models Methods Appl. Sci. 21 (2011) 871–892. Link, Web of ScienceGoogle Scholar
    • 17. A. Ducrot and P. Magal, Asymptotic behavior of a nonlocal diffusive logistic equation, SIAM J. Math. Anal. 46 (2014) 1731–1753, Crossref, Web of ScienceGoogle Scholar
    • 18. A. Ducrot and D. Manceau, A one-dimensional logistic like equation with nonlinear and nonlocal diffusion: Strong convergence to equilibrium, Proc. Amer. Math. Soc. 148 (2020) 3381–3392. Crossref, Web of ScienceGoogle Scholar
    • 19. A. Ducrot and G. Nadin, Asymptotic behaviour of travelling waves for the delayed Fisher–KPP equation, J. Differential Equations 256 (2014) 3115–3140. Crossref, Web of ScienceGoogle Scholar
    • 20. J. Dyson, S. A. Gourley, R. Villella-Bressan and G. F. Webb, Existence and asymptotic properties of solutions of a nonlocal evolution equation modeling cell–cell adhesion, SIAM J. Math. Anal. 42 (2010) 1784–1804. Crossref, Web of ScienceGoogle Scholar
    • 21. R. Eftimie, G. de Vries, M. A. Lewis and F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol. 69 (2007) 1537–1565. Crossref, Web of ScienceGoogle Scholar
    • 22. G. Faye and M. Holzer, Modulated traveling fronts for a nonlocal Fisher-KPP equation: A dynamical systems approach, J. Differential Equations 258 (2015) 2257–2289. Crossref, Web of ScienceGoogle Scholar
    • 23. X. Fu, Q. Griette and P. Magal, A cell–cell repulsion model on a hyperbolic Keller–Segel equation, J. Math. Biol. 80 (2020) 2257–2300. Crossref, Web of ScienceGoogle Scholar
    • 24. X. Fu, Q. Griette and P. Magal, Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation, Discrete Contin. Dyn. Syst. Ser. B 26(4) (2021) 1931–1966. Crossref, Web of ScienceGoogle Scholar
    • 25. Q. Griette, Singular measure traveling waves in an epidemiological model with continuous phenotypes, Trans. Amer. Math. Soc. 371 (2019) 4411–4458. Crossref, Web of ScienceGoogle Scholar
    • 26. F. Hamel and C. Henderson, Propagation in a Fisher-KPP equation with non-local advection, J. Funct. Anal. 278 (2020) 108426. Crossref, Web of ScienceGoogle Scholar
    • 27. K. Harley, P. van Heijster, R. Marangell, G. J. Pettet and M. Wechselberger, Existence of traveling wave solutions for a model of tumor invasion, SIAM J. Appl. Dyn. Syst. 13 (2014) 366–396. Crossref, Web of ScienceGoogle Scholar
    • 28. T. Hillen and K. J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009) 183–217. Crossref, Web of ScienceGoogle Scholar
    • 29. W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992) 819–824. Crossref, Web of ScienceGoogle Scholar
    • 30. S. Katsunuma, H. Honda, T. Shinoda, Y. Ishimoto, T. Miyata, H. Kiyonari, T. Abe, K.-I. Nibu, Y. Takai and H. Togashi, Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium, Int. J. Cell Biol. 212 (2016) 561–575. Crossref, Web of ScienceGoogle Scholar
    • 31. E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970) 399–415. Crossref, Web of ScienceGoogle Scholar
    • 32. E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol. 30 (1971) 225–234. Crossref, Web of ScienceGoogle Scholar
    • 33. K. A. Landman, G. J. Pettet and D. F. Newgreen, Chemotactic cellular migration: Smooth and discontinuous travelling wave solutions, SIAM J. Appl. Math. 63 (2003) 1666–1681. Crossref, Web of ScienceGoogle Scholar
    • 34. A. J. Leverentz, C. M. Topaz and A. J. Bernoff, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst. 8 (2009) 880–908. Crossref, Web of ScienceGoogle Scholar
    • 35. B. P. Marchant, J. Norbury and A. J. Perumpanani, Travelling shock waves arising in a model of malignant invasion, SIAM J. Appl. Math. 60 (2000) 463–476. Crossref, Web of ScienceGoogle Scholar
    • 36. A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol. 38 (1999) 534–570. Crossref, Web of ScienceGoogle Scholar
    • 37. A. Mogilner, L. Edelstein-Keshet, L. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol. 47 (2003) 353–389. Crossref, Web of ScienceGoogle Scholar
    • 38. D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol. 50 (2005) 49–66. Crossref, Web of ScienceGoogle Scholar
    • 39. H. Murakawa and H. Togashi, Continuous models for cell–cell adhesion, J. Theor. Biol. 374 (2015) 1–12. Crossref, Web of ScienceGoogle Scholar
    • 40. G. Nadin, B. Perthame and L. Ryzhik, Traveling waves for the Keller–Segel system with Fisher birth terms, Interfaces Free Bound. 10 (2008) 517–538. Crossref, Web of ScienceGoogle Scholar
    • 41. J. Pasquier, P. Magal, C. Boulangé-Lecomte, G. Webb and F. Le Foll, Consequences of cell-to-cell p-glycoprotein transfer on acquired multidrug resistance in breast cancer: A cell population dynamics model, Biol. Direct 6 (2011) 5. Crossref, Web of ScienceGoogle Scholar
    • 42. C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953) 311–338. CrossrefGoogle Scholar
    • 43. B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller–Segel model, Trans. Amer. Math. Soc. 361 (2009) 2319–2335. Crossref, Web of ScienceGoogle Scholar
    • 44. R. B. Salako and W. Shen, Spreading speeds and traveling waves of a parabolic–elliptic chemotaxis system with logistic source on N, Discrete Contin. Dyn. Syst. 37 (2017) 6189. Crossref, Web of ScienceGoogle Scholar
    • 45. R. B. Salako and W. Shen, Existence of traveling wave solutions of parabolic–parabolic chemotaxis systems, Nonlinear Anal. Real World Appl. 42 (2018) 93–119. Crossref, Web of ScienceGoogle Scholar
    • 46. R. B. Salako and W. Shen, Parabolic–elliptic chemotaxis model with space-time-dependent logistic sources on N. I. Persistence and asymptotic spreading, Math. Models Methods Appl. Sci. 28 (2018) 2237–2273. Link, Web of ScienceGoogle Scholar
    • 47. R. B. Salako, W. Shen and S. Xue, Can chemotaxis speed up or slow down the spatial spreading in parabolic–elliptic Keller–Segel systems with logistic source? J. Math. Biol. 79 (2019) 1455–1490. Crossref, Web of ScienceGoogle Scholar
    • 48. Y. Song, S. Wu and H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differential Equations 267 (2019) 6316–6351. Crossref, Web of ScienceGoogle Scholar
    • 49. J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford Mathematical Monographs (The Clarendon Press, 2007). Google Scholar
    • 50. Z.-C. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations 238 (2007) 153–200. Crossref, Web of ScienceGoogle Scholar
    • 51. E. Zeidler, Nonlinear Functional Analysis and its Applications: I: Fixed-Point Theorems (Springer-Verlag, 1986). Translated from the German by Peter R. Wadsack. CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!