World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Adaptive non-hierarchical Galerkin methods for parabolic problems with application to moving mesh and virtual element methods

    https://doi.org/10.1142/S0218202521500172Cited by:6 (Source: Crossref)

    We present a posteriori error estimates for inconsistent and non-hierarchical Galerkin methods for linear parabolic problems, allowing them to be used in conjunction with very general mesh modification for the first time. We treat schemes which are non-hierarchical in the sense that the spatial Galerkin spaces between time-steps may be completely unrelated from one another. The practical interest of this setting is demonstrated by applying our results to finite element methods on moving meshes and using the estimators to drive an adaptive algorithm based on a virtual element method on a mesh of arbitrary polygons. The a posteriori error estimates, for the error measured in the L2(H1) and L(L2) norms, are derived using the elliptic reconstruction technique in an abstract framework designed to precisely encapsulate our notion of inconsistency and non-hierarchicality and requiring no particular compatibility between the computational meshes used on consecutive time-steps, thereby significantly relaxing this basic assumption underlying previous estimates.

    Communicated by L. Beirao da Veiga

    AMSC: 65M50, 65N15, 65N30

    References

    • 1. R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edn., Pure and Applied Mathematics, Vol. 140 (Elsevier/Academic Press, 2003). Google Scholar
    • 2. B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (2013) 376–391. Crossref, Web of ScienceGoogle Scholar
    • 3. M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics (Wiley-Interscience [John Wiley & Sons], 2000). CrossrefGoogle Scholar
    • 4. M. Ainsworth and R. Rankin, Computable error bounds for finite element approximation on nonpolygonal domains, IMA J. Numer. Anal. 37 (2017) 604–645. Web of ScienceGoogle Scholar
    • 5. P. F. Antonietti, L. Beirão da Veiga, S. Scacchi and M. Verani, A C1 virtual element method for the Cahn–Hilliard equation with polygonal meshes, SIAM J. Numer. Anal. 54 (2016) 34–56. Crossref, Web of ScienceGoogle Scholar
    • 6. P. F. Antonietti, S. Berrone, M. Verani and S. Weißer, The virtual element method on anisotropic polygonal discretizations, in Numerical Mathematics and Advanced Applications ENUMATH 2017, eds. F. A. RaduK. KumarI. BerreJ. M. NordbottenI. S. Pop (Springer International Publishing, 2019), pp. 725–733. CrossrefGoogle Scholar
    • 7. E. Bänsch, F. Karakatsani and C. Makridakis, A posteriori error control for fully discrete Crank–Nicolson schemes, SIAM J. Numer. Anal. 50 (2012) 2845–2872. Crossref, Web of ScienceGoogle Scholar
    • 8. E. Bänsch, F. Karakatsani and C. Makridakis, The effect of mesh modification in time on the error control of fully discrete approximations for parabolic equations, Appl. Numer. Math. 67 (2013) 35–63. Crossref, Web of ScienceGoogle Scholar
    • 9. F. Bassi, L. Botti, A. Colombo and S. Rebay, Agglomeration based discontinuous Galerkin discretization of the Euler and Navier–Stokes equations, Comput. Fluids 61 (2012) 77–85. Crossref, Web of ScienceGoogle Scholar
    • 10. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199–214. Link, Web of ScienceGoogle Scholar
    • 11. L. Beirão da Veiga, F. Brezzi, L. D. Marini and A. Russo, The Hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. Link, Web of ScienceGoogle Scholar
    • 12. L. Beirão da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method, Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. Link, Web of ScienceGoogle Scholar
    • 13. L. Beirão da Veiga and G. Manzini, Residual a posteriori error estimation for the virtual element method for elliptic problems, ESAIM Math. Model. Numer. Anal. 49 (2015) 577–599. Crossref, Web of ScienceGoogle Scholar
    • 14. L. Beirão da Veiga, G. Manzini and L. Mascotto, A posteriori error estimation and adaptivity in hp virtual elements, Numer. Math. 143 (2019) 139–175. Crossref, Web of ScienceGoogle Scholar
    • 15. S. Berrone and A. Borio, A residual a posteriori error estimate for the Virtual Element Method, Math. Models Methods Appl. Sci. 27 (2017) 1423–1458. Link, Web of ScienceGoogle Scholar
    • 16. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn., Texts in Applied Mathematics, Vol. 15 (Springer, 2008). CrossrefGoogle Scholar
    • 17. S. C. Brenner and L.-Y. Sung, Virtual element methods on meshes with small edges or faces, Math. Models Methods Appl. Sci. 28 (2018) 1291–1336. Link, Web of ScienceGoogle Scholar
    • 18. C. J. Budd, W. Huang and R. D. Russell, Adaptivity with moving grids, Acta Numer. 18 (2009) 111–241. CrossrefGoogle Scholar
    • 19. A. Cangiani, E. H. Georgoulis, I. Kyza and S. Metcalfe, Adaptivity and blow-up detection for nonlinear evolution problems, SIAM J. Sci. Comput. 38 (2016) A3833–A3856. Crossref, Web of ScienceGoogle Scholar
    • 20. A. Cangiani, E. H. Georgoulis, T. Pryer and O. J. Sutton, A posteriori error estimates for the virtual element method, Numer. Math. 137 (2017) 857–893. Crossref, Web of ScienceGoogle Scholar
    • 21. A. Cangiani, E. H. Georgoulis and Y. A. Sabawi, Adaptive discontinuous Galerkin methods for elliptic interface problems, Math. Comput. 87 (2018) 2675–2707. Crossref, Web of ScienceGoogle Scholar
    • 22. A. Cangiani, E. H. Georgoulis and Y. A. Sabawi, Convergence of an adaptive discontinuous Galerkin method for elliptic interface problems, J. Comput. Appl. Math. 367 (2020) 112397, 15. Crossref, Web of ScienceGoogle Scholar
    • 23. A. Cangiani, G. Manzini and O. J. Sutton, Conforming and nonconforming virtual element methods for elliptic problems, IMA J. Numer. Anal. 37 (2017) 1317–1354. Web of ScienceGoogle Scholar
    • 24. Z. Chen and J. Feng, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems, Math. Comput. 73 (2004) 1167–1193. Crossref, Web of ScienceGoogle Scholar
    • 25. J. Collis and P. Houston, Adaptive discontinuous Galerkin methods on polytopic meshes, in Advances in Discretization Methods, SEMA SIMAI Springer Series, Vol. 12 (Springer, 2016), pp. 187–206. CrossrefGoogle Scholar
    • 26. W. Dörfler and M. Rumpf, An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation, Math. Comput. 67 (1998) 1361–1382. Crossref, Web of ScienceGoogle Scholar
    • 27. T. Dupont, Mesh modification for evolution equations, Math. Comput. 39 (1982) 85–107. Crossref, Web of ScienceGoogle Scholar
    • 28. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal. 28 (1991) 43–77. Crossref, Web of ScienceGoogle Scholar
    • 29. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in LL2 and LL, SIAM J. Numer. Anal. 32 (1995) 706–740. Crossref, Web of ScienceGoogle Scholar
    • 30. L. C. Evans, Partial Differential Equations, 2nd edn., Graduate Studies in Mathematics, Vol. 19 (Amer. Math. Soc., 2010). CrossrefGoogle Scholar
    • 31. E. H. Georgoulis, O. Lakkis and J. M. Virtanen, A posteriori error control for discontinuous Galerkin methods for parabolic problems, SIAM J. Numer. Anal. 49 (2011) 427–458. Crossref, Web of ScienceGoogle Scholar
    • 32. O. Lakkis and C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comput. 75 (2006) 1627–1658. Crossref, Web of ScienceGoogle Scholar
    • 33. X. Liao and R. H. Nochetto, Local a posteriori error estimates and adaptive control of pollution effects, Numer. Methods Partial Differential Equations 19 (2003) 421–442. Crossref, Web of ScienceGoogle Scholar
    • 34. C. Makridakis, Space and time reconstructions in a posteriori analysis of evolution problems, in ESAIM Proc., Vol. 21 (EDP Sciences, 2007), pp. 31–44. CrossrefGoogle Scholar
    • 35. C. Makridakis and R. H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal. 41 (2003) 1585–1594. Crossref, Web of ScienceGoogle Scholar
    • 36. D. Mora, G. Rivera and R. Rodríguez, A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem, Comput. Math. Appl. 74 (2017) 2172–2190. Crossref, Web of ScienceGoogle Scholar
    • 37. M. Picasso, Adaptive finite elements for a linear parabolic problem, Comput. Methods Appl. Mech. Eng. 167 (1998) 223–237. Crossref, Web of ScienceGoogle Scholar
    • 38. O. J. Sutton, The virtual element method in 50 lines of MATLAB, Numer. Algorithms 75 (2017) 1141–1159. Crossref, Web of ScienceGoogle Scholar
    • 39. O. J. Sutton, Virtual element methods, Ph.D. thesis, University of Leicester (2017). Google Scholar
    • 40. O. J. Sutton, Long-time L(L2) a posteriori error estimates for fully discrete parabolic problems, IMA J. Numer. Anal. 40 (2020) 498–529. Crossref, Web of ScienceGoogle Scholar
    • 41. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd edn., Springer Series in Computational Mathematics, Vol. 25 (Springer-Verlag, 2006). Google Scholar
    • 42. G. Vacca and L. Beirão da Veiga, Virtual element methods for parabolic problems on polygonal meshes, Numer. Methods Partial Differ. Equ. 31 (2015) 2110–2134. Crossref, Web of ScienceGoogle Scholar
    • 43. R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Numerical Mathematics and Scientific Computation (Oxford Univ. Press, 2013). CrossrefGoogle Scholar
    • 44. S. Weißer, Anisotropic polygonal and polyhedral discretizations in finite element analysis, ESAIM Math. Model. Numer. Anal. 53 (2019) 475–501. Crossref, Web of ScienceGoogle Scholar
    • 45. T. P. Wihler, Weighted L2-norm a posteriori error estimation of FEM in polygons, Int. J. Numer. Anal. Model. 4 (2007) 100–115. Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!