World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations

    https://doi.org/10.1142/S0218202520500487Cited by:15 (Source: Crossref)

    We study an implicit finite-volume scheme for nonlinear, non-local aggregation-diffusion equations which exhibit a gradient-flow structure, recently introduced in [R. Bailo, J. A. Carrillo and J. Hu, Fully discrete positivity-preserving and energy-dissipating schemes for aggregation-diffusion equations with a gradient flow structure, arXiv:1811.11502]. Crucially, this scheme keeps the dissipation property of an associated fully discrete energy, and does so unconditionally with respect to the time step. Our main contribution in this work is to show the convergence of the method under suitable assumptions on the diffusion functions and potentials involved.

    Communicated by E. Suli

    AMSC: 45K05, 65M08, 65M12

    References

    • 1. L. Ambrosio, N. Gigli and G. Savaré , Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics. ETH Zürich (Birkhäuser, 2005). Google Scholar
    • 2. N. J. Armstrong, K. J. Painter and J. A. Sherratt , A continuum approach to modelling cell–cell adhesion, J. Theor. Biol. 243 (2006) 98–113. Crossref, Web of ScienceGoogle Scholar
    • 3. R. Bailo, J. A. Carrillo and J. Hu , Fully discrete positivity-preserving and energy-dissipating schemes for aggregation-diffusion equations with a gradient flow structure, Commun. Math. Sci. 18(5) (2020) 1259–1303. Crossref, Web of ScienceGoogle Scholar
    • 4. D. Balagué, J. A. Carrillo, T. Laurent and G. Raoul , Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal. 209 (2013) 1055–1088. Crossref, Web of ScienceGoogle Scholar
    • 5. G. I. Barenblatt , On some unsteady motions of a liquid and gas in a porous medium, Prikl. Mat. Mekh. 16 (1952) 67–78. Google Scholar
    • 6. D. Benedetto, E. Caglioti and M. Pulvirenti , A kinetic equation for granular media, ESAIM: M2AN 31 (1997) 615–641. CrossrefGoogle Scholar
    • 7. A. L. Bertozzi, T. Kolokolnikov, H. Sun, D. Uminsky and J. von Brecht , Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci. 13 (2015) 955–985. Crossref, Web of ScienceGoogle Scholar
    • 8. M. Bessemoulin-Chatard and C. Chainais-Hillairet , Exponential decay of a finite volume scheme to the thermal equilibrium for drift–diffusion systems, J. Numer. Math. 25 (2017) 147–168. Crossref, Web of ScienceGoogle Scholar
    • 9. M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet , On discrete functional inequalities for some finite volume schemes, IMA J. Numer. Anal. 35 (2015) 1125–1149. Crossref, Web of ScienceGoogle Scholar
    • 10. H. Brezis , Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer-Verlag, 2010). CrossrefGoogle Scholar
    • 11. J. A. Carrillo, A. Chertock and Y. Huang , a finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys. 17 (2015) 233–258. Crossref, Web of ScienceGoogle Scholar
    • 12. J. A. Carrillo, K. Craig and Y. Yao , Aggregation-diffusion equations: dynamics, asymptotics, and singular limits, in Active Particles, eds. N. Bellomo, P. Degond and E. Tadmor , Vol. 2 (Springer International Publishing, 2019), pp. 65–108. CrossrefGoogle Scholar
    • 13. J. A. Carrillo, M. G. Delgadino and A. Mellet , Regularity of local minimizers of the interaction energy via obstacle problems, Commun. Math. Phys. 343 (2016) 747–781. Crossref, Web of ScienceGoogle Scholar
    • 14. J. A. Carrillo, S. Fagioli, F. Santambrogio and M. Schmidtchen , Splitting schemes and segregation in reaction cross-diffusion systems, SIAM J. Math. Anal. 50 (2018) 5695–5718. Crossref, Web of ScienceGoogle Scholar
    • 15. J. A. Carrillo, F. Filbet and M. Schmidtchen , Convergence of a finite volume scheme for a system of interacting species with cross-diffusion, Numer. Math. 145 (2020) 473–511. Crossref, Web of ScienceGoogle Scholar
    • 16. J. A. Carrillo, Y. Huang and S. Martin , Explicit flock solutions for Quasi-Morse potentials, Eur. J. Appl. Math. 25 (2014) 553–578. Crossref, Web of ScienceGoogle Scholar
    • 17. J. A. Carrillo, Y. Huang and M. Schmidtchen , Zoology of a nonlocal cross-diffusion model for two species, SIAM J. Appl. Math. 78 (2018) 1078–1104. Crossref, Web of ScienceGoogle Scholar
    • 18. J. A. Carrillo, S. Martin and V. Panferov , A new interaction potential for swarming models, Phys. D, Nonlinear Phenom. 260 (2013) 112–126. Crossref, Web of ScienceGoogle Scholar
    • 19. J. A. Carrillo, R. J. McCann and C. Villani , Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam. 19 (2003) 971–1018. Crossref, Web of ScienceGoogle Scholar
    • 20. J. A. Carrillo, R. J. McCann and C. Villani , Contractions in the 2-wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal. 179 (2006) 217–263. Crossref, Web of ScienceGoogle Scholar
    • 21. J. A. Carrillo, H. Murakawa, M. Sato, H. Togashi and O. Trush , A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theor. Biol. 474 (2019) 14–24. Crossref, Web of ScienceGoogle Scholar
    • 22. C. Chainais-Hillairet and F. Filbet , Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model, IMA J. Numer. Anal. 27 (2007) 689–716. Crossref, Web of ScienceGoogle Scholar
    • 23. J. S. Chang and G. Cooper , A practical difference scheme for Fokker–Planck equations, J.Comput. Phys. 6 (1970) 1–16. CrossrefGoogle Scholar
    • 24. M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes , Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett. 96 (2006) 104302. Crossref, Web of ScienceGoogle Scholar
    • 25. R. Fetecau and Y. Huang , Equilibria of biological aggregations with nonlocal repulsive–attractive interactions, Phys. D, Nonlinear Phenom. 260 (2013) 49–64. Crossref, Web of ScienceGoogle Scholar
    • 26. R. C. Fetecau , Collective Behavior of Biological aggregations in two dimensions: A Nonlocal kinetic model, Math. Models Methods Appl. Sci. 21 (2011) 1539–1569. Link, Web of ScienceGoogle Scholar
    • 27. R. C. Fetecau, Y. Huang and T. Kolokolnikov , Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity 24 (2011) 2681–2716. Crossref, Web of ScienceGoogle Scholar
    • 28. W. Gurney and R. Nisbet , The regulation of inhomogeneous populations, J. Theor. Biol. 52 (1975) 441–457. Crossref, Web of ScienceGoogle Scholar
    • 29. D. Hilhorst, R. Van Der Hout and L. A. Peletier , Nonlinear diffusion in the presence of fast reaction, Nonlinear Anal. Theory, Methods Appl. 41 (2000) 803–823. Crossref, Web of ScienceGoogle Scholar
    • 30. T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi , Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E 84 (2011) 015203. Crossref, Web of ScienceGoogle Scholar
    • 31. Y.-X. Li, R. Lukeman and L. Edelstein-Keshet , Minimal mechanisms for school formation in self-propelled particles, Phys. D, Nonlinear Phenom. 237 (2008) 699–720. Crossref, Web of ScienceGoogle Scholar
    • 32. R. J. McCann , A convexity principle for Interacting Gases, Adv. Math. 128 (1997) 153–179. Crossref, Web of ScienceGoogle Scholar
    • 33. A. Mogilner and L. Edelstein-Keshet , A non-local model for a swarm, J. Math. Biol. 38 (1999) 534–570. Crossref, Web of ScienceGoogle Scholar
    • 34. H. Murakawa and H. Togashi , Continuous models for cell–cell adhesion, J. Theor. Biol. 374 (2015) 1–12. Crossref, Web of ScienceGoogle Scholar
    • 35. F. Otto , The Geometry of Dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations 26 (2001) 101–174. Crossref, Web of ScienceGoogle Scholar
    • 36. L. Pareschi and M. Zanella , Structure preserving schemes for nonlinear Fokker–Planck equations and applications, J. Sci. Comput. 74 (2018) 1575–1600. Crossref, Web of ScienceGoogle Scholar
    • 37. C. M. Topaz and A. L. Bertozzi , Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math. 65 (2004) 152–174. Crossref, Web of ScienceGoogle Scholar
    • 38. C. M. Topaz, A. L. Bertozzi and M. A. Lewis , A nonlocal continuum model for biological aggregation, Bull. Math. Biol. 68 (2006) 1601–1623. Crossref, Web of ScienceGoogle Scholar
    • 39. G. Toscani , One-dimensional kinetic models of granular flows, ESAIM: Math. Model. Numer. Anal. 34 (2010) 1277–1291. Crossref, Web of ScienceGoogle Scholar
    • 40. J. L. Vazquez , The Porous Medium Equation (Oxford Univ. Press, 2006). CrossrefGoogle Scholar
    • 41. A. Volkening and B. Sandstede , Modelling stripe formation in zebrafish: An agent-based approach, J. R. Soc. Interface 12 (2015) 20150812. Crossref, Web of ScienceGoogle Scholar
    • 42. Y. B. Zel’dovich and A. S. Kompaneets , On the theory of propagation of heat with the heat conductivity depending upon the temperature, Collection in honor of the seventieth birthday of academician A. F. Ioffe (1950) 61–71. Google Scholar
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!