World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Density-induced consensus protocol

    https://doi.org/10.1142/S0218202520500451Cited by:3 (Source: Crossref)

    The paper introduces a model of collective behavior where agents receive information only from sufficiently dense crowds in their immediate vicinity. The system is an asymmetric, density-induced version of the Cucker–Smale model with short-range interactions. We prove the basic mathematical properties of the system and concentrate on the presentation of interesting behaviors of the solutions. The results are illustrated by numerical simulations.

    Communicated by N. Bellomo

    AMSC: 70F20, 92D25, 92D50, 91D30

    References

    • 1. G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato and J. Soler , Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci. 29 (2019) 1901–2005. Link, Web of ScienceGoogle Scholar
    • 2. G. Albi, M. Herty and L. Pareschi , Kinetic description of optimal control problems and applications to opinion consensus, Commun. Math. Sci. 13 (2015) 1407–1429. Crossref, Web of ScienceGoogle Scholar
    • 3. A. Aydoğdu, M. Caponigro, S. McQuade, B. Piccoli, N. Pouradier Duteil, F. Rossi and E. Trélat , Interaction network, state space, and control in social dynamics, in Active Particles Vol. 1. Advances in Theory, Models, and Applications, Modeling and Simultion in Science, Engineering and Technology (Birkhäuser/Springer, 2017), pp. 99–140. CrossrefGoogle Scholar
    • 4. H.-O. Bae, S.-Y. Cho, S.-H. Lee, J. Yoo and S.-B. Yun , A particle model for the herding phenomena induced by dynamic market signals, J. Stat. Phys. 177 (2019) 365–398. Crossref, Web of ScienceGoogle Scholar
    • 5. H.-O. Bae, S.-Y. Ha, Y. Kim, S.-H. Lee, H. Lim and J. Yoo , A mathematical model for volatility flocking with a regime switching mechanism in a stock market, Math. Models Methods Appl. Sci. 25 (2015) 1299–1335. Link, Web of ScienceGoogle Scholar
    • 6. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic , Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. 105 (2008) 1232–1237. Crossref, Web of ScienceGoogle Scholar
    • 7. J. A. Cañizo, J. A. Carrillo and J. Rosado , A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci. 21 (2011) 515–539. Link, Web of ScienceGoogle Scholar
    • 8. J. A. Carrillo, Y.-P. Choi, P. B. Mucha and J. Peszek , Sharp conditions to avoid collisions in singular Cucker–Smale interactions, Nonlinear Anal. Real World Appl. 37 (2017) 317–328. Crossref, Web of ScienceGoogle Scholar
    • 9. J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani , Asymptotic flocking dynamics for the kinetic Cucker–Smale model, SIAM J. Math. Anal. 42 (2010) 218–236. Crossref, Web of ScienceGoogle Scholar
    • 10. Y.-P. Choi, S.-Y. Ha and J. Kim , Propagation of regularity and finite-time collisions for the thermomechanical Cucker–Smale model with a singular communication, Netw. Heterog. Media 13 (2018) 379–407. Crossref, Web of ScienceGoogle Scholar
    • 11. Y.-P. Choi, S.-Y. Ha and Z. Li , Emergent dynamics of the Cucker–Smale flocking model and its variants, in Active Particles.Vol. 1: Advances in Theory, Models, and Applications, Modeling Simulation in Science Engineering and Technology (Birkhäuser/Springer, 2017), pp. 299–331. CrossrefGoogle Scholar
    • 12. Y.-P. Choi and J. Haskovec , Hydrodynamic Cucker–Smale model with normalized communication weights and time delay, SIAM J. Math. Anal. 51 (2019) 2660–2685. Crossref, Web of ScienceGoogle Scholar
    • 13. Y.-P. Choi, D. Kalise, J. Peszek and A. A. Peters, A collisionless singular Cucker–Smale model with decentralized formation control, arXiv:1807.05177v4. Google Scholar
    • 14. F. Cucker and J.-G. Dong , On the critical exponent for flocks under hierarchical leadership, Math. Models Methods Appl. Sci. 19 (2009) 1391–1404. Link, Web of ScienceGoogle Scholar
    • 15. F. Cucker and J.-G. Dong , On flocks influenced by closest neighbors, Math. Models Methods Appl. Sci. 26 (2016) 2685–2708. Link, Web of ScienceGoogle Scholar
    • 16. F. Cucker and S. Smale , Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007) 852–862. Crossref, Web of ScienceGoogle Scholar
    • 17. R. Danchin, P. B. Mucha, J. Peszek and B. Wróblewski , Regular solutions to the fractional Euler alignment system in the Besov spaces framework, Math. Models Methods Appl. Sci. 29(1) (2019) 89–119. Link, Web of ScienceGoogle Scholar
    • 18. P. Degond, C. Appert-Rolland, M. Moussaïd, J. Pettré and G. Theraulaz , A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys. 152 (2013) 1033–1068. Crossref, Web of ScienceGoogle Scholar
    • 19. H. Dietert and R. Shvydkoy. On Cucker–Smale dynamical systems with degenerate communication, arXiv:1903.00094v2. Google Scholar
    • 20. C. Dogbe , On the modelling of crowd dynamics by generalized kinetic models, J. Math. Anal. Appl. 387 (2012) 512–532. Crossref, Web of ScienceGoogle Scholar
    • 21. M. Ester, H.-P. Kriegel, J. Sander and X. Xu , A density-based algorithm for discovering clusters in large spatial databases with noise, in Proc. Second Int. Conf. Knowledge Discovery and Data Mining (AAAI Press, 1996), pp. 226–231. Google Scholar
    • 22. S.-Y. Ha, J. Kim, J. Park and X. Zhang , Complete cluster predictability of the Cucker–Smale flocking model on the real line, Arch. Ration. Mech. Anal. 231 (2019) 319–365. Crossref, Web of ScienceGoogle Scholar
    • 23. S.-Y. Ha and T. Ruggeri , Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. Anal. 223 (2017) 1397–1425. Crossref, Web of ScienceGoogle Scholar
    • 24. S. He and E. Tadmor , Global regularity of two-dimensional flocking hydrodynamics, C. R. Math. Acad. Sci. Paris 355 (2017) 795–805. Crossref, Web of ScienceGoogle Scholar
    • 25. R. Hegselmann and U. Krause , Opinion dynamics and bounded confidence models, analysis, and simulation, J. Artif. Soc. Soc. Simul. 5 (2002), http://jasss.soc.surrey.ac.uk/5/3/2.html. Web of ScienceGoogle Scholar
    • 26. C. Jin , Flocking of the Motsch–Tadmor model with a cut-off interaction function, J. Stat. Phys. 171 (2018) 345–360. Crossref, Web of ScienceGoogle Scholar
    • 27. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Millman, M. Jarrod, N. Nikolay, R. J. Andrew, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng, E. C. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt , SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17 (2020) 261–272. Crossref, Web of ScienceGoogle Scholar
    • 28. A. Kiselev and C. Tan , Global regularity for 1D Eulerian dynamics with singular interaction forces, SIAM J. Math. Anal. 50 (2018) 6208–6229. Crossref, Web of ScienceGoogle Scholar
    • 29. U. Krause , A discrete nonlinear and non-autonomous model of consensus formation, in Communications in Difference Equations (Poznan, 1998) (Gordon and Breach, 2000), pp. 227–236. Google Scholar
    • 30. Z. Li , Effectual leadership in flocks with hierarchy and individual preference, Discr. Contin. Dyn. Syst. 34 (2014) 3683–3702. Crossref, Web of ScienceGoogle Scholar
    • 31. I. Markou , Collision-avoiding in the singular Cucker–Smale model with nonlinear velocity couplings, Discr. Contin. Dyn. Syst. 38 (2018) 5245–5260. Crossref, Web of ScienceGoogle Scholar
    • 32. P. Minakowski, Density-induced consensus protocol (source code) (2019), https://doi.org/10.5281/zenodo.3551842. Google Scholar
    • 33. P. Minakowski, P. B. Mucha, J. Peszek and E. Zatorska , Singular Cucker–Smale Dynamics (Springer International Publishing, 2019), pp. 201–243. CrossrefGoogle Scholar
    • 34. J. Morales, J. Peszek and E. Tadmor , Flocking with short-range interactions, J. Stat. Phys. 176 (2019) 382–397. Crossref, Web of ScienceGoogle Scholar
    • 35. S. Motsch and E. Tadmor , A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys. 144 (2011) 923–947. Crossref, Web of ScienceGoogle Scholar
    • 36. S. Motsch and E. Tadmor , Heterophilious dynamics enhances consensus, SIAM Rev. 56 (2014) 577–621. Crossref, Web of ScienceGoogle Scholar
    • 37. P. B. Mucha and J. Peszek , The Cucker–Smale equation: Singular communication weight, measure-valued solutions and weak-atomic uniqueness, Arch. Ration. Mech. Anal. 227 (2018) 273–308. Crossref, Web of ScienceGoogle Scholar
    • 38. R. Olfati-Saber , Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Automat. Control 51 (2006) 401–420. Crossref, Web of ScienceGoogle Scholar
    • 39. R. Olfati-Saber and R. M. Murray , Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Automat. Control 49 (2004) 1520–1533. Crossref, Web of ScienceGoogle Scholar
    • 40. J. Peszek , Existence of piecewise weak solutions of a discrete Cucker–Smale’s flocking model with a singular communication weight, J. Differential Equations 257 (2014) 2900–2925. Crossref, Web of ScienceGoogle Scholar
    • 41. J. Peszek , Discrete Cucker–Smale flocking model with a weakly singular weight, SIAM J. Math. Anal. 47 (2015) 3671–3686. Crossref, Web of ScienceGoogle Scholar
    • 42. J. Shen , Cucker–Smale flocking under hierarchical leadership, SIAM J. Appl. Math. 68 (2007/2008) 694–719. Crossref, Web of ScienceGoogle Scholar
    • 43. R. Shvydkoy, Global existence and stability of nearly aligned flocks, arXiv:1802.08926. Google Scholar
    • 44. R. Shvydkoy and E. Tadmor , Eulerian dynamics with a commutator forcing, Trans. Math. Appl. 1 (2017) tnx001. Google Scholar
    • 45. R. Shvydkoy and E. Tadmor, Topological models for emergent dynamics with short-range interactions, arXiv:1806.01371. Google Scholar
    • 46. C. M. Topaz and A. L. Bertozzi , Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math. 65 (2004) 152–174. Crossref, Web of ScienceGoogle Scholar
    • 47. X. Zhang and T. Zhu, Complete classification of the asymptotical behavior for singular C-S model on the real line, arXiv:1909.04439v1. Google Scholar
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!