World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

On the unsteady Darcy–Forchheimer–Brinkman equation in local and nonlocal tumor growth models

    https://doi.org/10.1142/S0218202519500325Cited by:27 (Source: Crossref)

    A mathematical analysis of local and nonlocal phase-field models of tumor growth is presented that includes time-dependent Darcy–Forchheimer–Brinkman models of convective velocity fields and models of long-range cell interactions. A complete existence analysis is provided. In addition, a parameter-sensitivity analysis is described that quantifies the sensitivity of key quantities of interest to changes in parameter values. Two sensitivity analyses are examined; one employing statistical variances of model outputs and another employing the notion of active subspaces based on existing observational data. Remarkably, the two approaches yield very similar conclusions on sensitivity for certain quantities of interest. The work concludes with the presentation of numerical approximations of solutions of the governing equations and results of numerical experiments on tumor growth produced using finite element discretizations of the full tumor model for representative cases.

    Communicated by N. Bellomo

    AMSC: 35K35, 76D07, 35A01, 35D30, 35Q92, 65C60, 65M60

    References

    • 1. R. P. Araujo and D. S. McElwain, A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol. 66 (2014) 1039–1091. Crossref, Web of ScienceGoogle Scholar
    • 2. P. W. Bates, On some nonlocal evolution equations arising in materials science, in Nonlinear Dynamics and Evolution Equations (Amer. Math. Soc., 2006), pp. 13–52. CrossrefGoogle Scholar
    • 3. P. W. Bates and J. Han, The Dirichlet boundary problem for a nonlocal Cahn–Hilliard equation, J. Math. Anal. Appl. 311 (2015) 289–312. Crossref, Web of ScienceGoogle Scholar
    • 4. P. W. Bates and J. Han, The Neumann boundary problem for a nonlocal Cahn–Hilliard equation, J. Differential Equations 212 (2005) 235–277. Crossref, Web of ScienceGoogle Scholar
    • 5. N. Bellomo, N. Li and P. K. Maini, On the foundations of cancer modelling: Selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci. 18 (2008) 593–646. Link, Web of ScienceGoogle Scholar
    • 6. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics (Springer-Verlag, 2013). CrossrefGoogle Scholar
    • 7. F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, Applied Mathematical Sciences (Springer-Verlag, 2012). Google Scholar
    • 8. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer-Verlag, 2010). CrossrefGoogle Scholar
    • 9. H. Burcharth and O. Andersen, On the one-dimensional steady and unsteady porous flow equations, Coast. Eng. 24 (1995) 233–257. Crossref, Web of ScienceGoogle Scholar
    • 10. H. M. Byrne, M. R. Owen, T. Alarcon, J. Murphy and P. K. Maini, Modelling the response of vascular tumours to chemotherapy: A multiscale approach, Math. Models Methods Appl. Sci. 16 (2006) 1219–1241. Link, Web of ScienceGoogle Scholar
    • 11. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958) 258–267. Crossref, Web of ScienceGoogle Scholar
    • 12. M. A. Chaplain, M. Lachowicz, Z. Szymańska and D. Wrzosek, Mathematical modelling of cancer invasion: The importance of cell–cell adhesion and cell-matrix adhesion, Math. Models Methods Appl. Sci. 21 (2011) 719–743. Link, Web of ScienceGoogle Scholar
    • 13. Z. Chen, S. L. Lyons and G. Qin, Derivation of the Forchheimer law via homogenization, Transp. Porous Media 44 (2001) 325–335. Crossref, Web of ScienceGoogle Scholar
    • 14. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, 1984). Google Scholar
    • 15. P. Colli, S. Frigeri and M. Grasselli, Global existence of weak solutions to a nonlocal Cahn–Hilliard–Navier–Stokes system, J. Math. Anal. Appl. 386 (2012) 428–444. Crossref, Web of ScienceGoogle Scholar
    • 16. P. G. Constantine, Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies (SIAM, 2015). CrossrefGoogle Scholar
    • 17. P. G. Constantine and P. Diaz, Global sensitivity metrics from active subspaces, Reliab. Eng. Syst. Safe. 162 (2017) 1–13. Crossref, Web of ScienceGoogle Scholar
    • 18. P. G. Constantine, E. Dow and Q. Wang, Active subspace methods in theory and practice: Applications to kriging surfaces, SIAM J. Sci. Comput. 36 (2014) A1500–A1524. Crossref, Web of ScienceGoogle Scholar
    • 19. V. Cristini, X. Li, J. S. Lowengrub and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching, J. Math. Biol. 58 (2009) 723–763. Crossref, Web of ScienceGoogle Scholar
    • 20. V. Cristini, J. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol. 46 (2003) 191–224. Crossref, Web of ScienceGoogle Scholar
    • 21. T. S. Deisboeck and G. S. Stamatakos, Multiscale Cancer Modeling (CRC Press, 2010). CrossrefGoogle Scholar
    • 22. F. Della Porta, A. Giorgini and M. Grasselli, The nonlocal Cahn–Hilliard–Hele–Shaw system with logarithmic potential, Nonlinearity 31 (2018) 4851–4881. Crossref, Web of ScienceGoogle Scholar
    • 23. F. Della Porta and M. Grasselli, On the nonlocal Cahn–Hilliard–Brinkman and Cahn–Hilliard–Hele–Shaw systems, Commun. Math. Sci. 13 (2015) 1541–1567. Crossref, Web of ScienceGoogle Scholar
    • 24. M. Ebenbeck and H. Garcke, Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis, J. Differential Equations 266 (2018) 5998–6036. Crossref, Web of ScienceGoogle Scholar
    • 25. C. Engwer, C. Stinner and C. Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, Math. Models Methods Appl. Sci. 27 (2017) 1355–1390. Link, Web of ScienceGoogle Scholar
    • 26. L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics (Amer. Math. Soc., 2010). CrossrefGoogle Scholar
    • 27. S. Frigeri and M. Grasselli, Nonlocal Cahn–Hilliard–Navier–Stokes systems with singular potentials, Dyn. Partial Differential Equations 9 (2012) 273–304. Crossref, Web of ScienceGoogle Scholar
    • 28. S. Frigeri, M. Grasselli and P. Krejčí, Strong solutions for two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems, J. Differential Equations 255 (2013) 2587–2614. Crossref, Web of ScienceGoogle Scholar
    • 29. S. Frigeri, M. Grasselli and E. Rocca, A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility, Nonlinearity 28 (2015) 1257–1293. Crossref, Web of ScienceGoogle Scholar
    • 30. S. Frigeri, M. Grasselli and E. Rocca, On a diffuse interface model of tumour growth, European J. Appl. Math. 26 (2015) 215–243. Crossref, Web of ScienceGoogle Scholar
    • 31. S. Frigeri, K. F. Lam and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, in Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs (Springer, 2017), pp. 217–254. CrossrefGoogle Scholar
    • 32. H. Gajewski and K. Zacharias, On a nonlocal phase separation model, J. Math. Anal. Appl. 286 (2003) 11–31. Crossref, Web of ScienceGoogle Scholar
    • 33. C. G. Gal, A. Giorgini and M. Grasselli, The nonlocal Cahn–Hilliard equation with singular potential: Well-posedness, regularity and strict separation property, J. Differential Equations 263 (2017) 5253–5297. Crossref, Web of ScienceGoogle Scholar
    • 34. H. Garcke and K. F. Lam, Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth, AIMS Math. 1 (2016) 318–360. Crossref, Web of ScienceGoogle Scholar
    • 35. H. Garcke and K. F. Lam, Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active ort, European J. Appl. Math. 28 (2017) 284–316. Crossref, Web of ScienceGoogle Scholar
    • 36. H. Garcke and K. F. Lam, On a Cahn–Hilliard–Darcy system for tumour growth with solution dependent source terms, in Trends in Applications of Mathematics to Mechanics (Springer, 2018), pp. 243–264. CrossrefGoogle Scholar
    • 37. H. Garcke, K. F. Lam, E. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci. 26 (2016) 1095–1148. Link, Web of ScienceGoogle Scholar
    • 38. A. Gerisch and M. Chaplain, Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion, J. Theor. Biol. 250 (2008) 684–704. Crossref, Web of ScienceGoogle Scholar
    • 39. G. Giacomin and J. L. Lebowitz, Exact macroscopic description of phase segregation in model alloys with long range interactions, Phys. Rev. Lett. 76 (1996) 1094–1097. Crossref, Web of ScienceGoogle Scholar
    • 40. G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits, J. Stat. Phys. 87 (1997) 37–61. Crossref, Web of ScienceGoogle Scholar
    • 41. V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier–Stokes Equations, Lecture Notes in Mathematics (Springer-Verlag, 1979). CrossrefGoogle Scholar
    • 42. L. Graziano and L. Preziosi, Mechanics in tumor growth, in Modeling of Biological Materials (Springer, 2007), pp. 263–321. CrossrefGoogle Scholar
    • 43. Z. Gu and H. Wang, Gravity waves over porous bottoms, Coast. Eng. 15 (1991) 497–524. Crossref, Web of ScienceGoogle Scholar
    • 44. Z. Guan, C. Wang and S. M. Wise, A convergent convex splitting scheme for the periodic nonlocal Cahn–Hilliard equation, Numer. Math. 128 (2014) 377–406. Crossref, Web of ScienceGoogle Scholar
    • 45. M. E. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Physica D. 92 (1996) 178–192. Crossref, Web of ScienceGoogle Scholar
    • 46. K. R. Hall, G. M. Smith and D. J. Turcke, Comparison of oscillatory and stationary flow through porous media, Coast. Eng. 24 (1995) 217–232. Crossref, Web of ScienceGoogle Scholar
    • 47. H. Hatzikirou, A. Deutsch, C. Schaller, M. Simon and K. Swanson, Mathematical modelling of glioblastoma tumour development: A review, Math. Models Methods Appl. Sci. 15 (2005) 1779–1794. Link, Web of ScienceGoogle Scholar
    • 48. A. Hawkins-Daarud, K. G. van der Zee and T. J. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Methods Biomed. Eng. 28 (2021) 3–24. Crossref, Web of ScienceGoogle Scholar
    • 49. J. Jiang, H. Wu and S. Zheng, Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling tumor growth, J. Differential Equations 259 (2015) 3032–3077. Crossref, Web of ScienceGoogle Scholar
    • 50. K. F. Lam and H. Wu, Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis, European J. Appl. Math. 29 (2018) 595–644. Crossref, Web of ScienceGoogle Scholar
    • 51. L. M. Laushey and L. V. Popat, Darcy’s law during unsteady flow, in Ground Water: General Assembly of Bern, Vol. 77 (1957), pp. 284–299. Google Scholar
    • 52. E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics (Amer. Math. Soc., 2001). CrossrefGoogle Scholar
    • 53. E. A. Lima, R. C. Almeida and J. T. Oden, Analysis and numerical solution of stochastic phase-field models of tumor growth, Numer. Methods Partial Differential Equations 31 (2015) 552–574. Crossref, Web of ScienceGoogle Scholar
    • 54. E. A. Lima, N. Ghousifam, A. Ozkan, J. T. Oden, A. Shahmoradi, M. N. Rylander, B. Wohlmuth and T. E. Yankeelov, Calibration of multi-parameter models of avascular tumor growth using time resolved microscopy data, Sci. Rep. 8 (2018) Report number 14558. Crossref, Web of ScienceGoogle Scholar
    • 55. E. A. Lima, J. T. Oden and R. C. Almeida, A hybrid ten-species phase-field model of tumor growth, Math. Models Methods Appl. Sci. 24 (2014) 2569–2599. Link, Web of ScienceGoogle Scholar
    • 56. J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, Grundlehren der mathematischen Wissenschaften (Springer-Verlag, 2012). Google Scholar
    • 57. A. Logg, K.-A. Mardal and G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book (Springer-Verlag 2012). CrossrefGoogle Scholar
    • 58. J. Lowengrub, E. Titi and K. Zhao, Analysis of a mixture model of tumor growth, European J. Appl. Math. 24 (2013) 691–734. Crossref, Web of ScienceGoogle Scholar
    • 59. P. Macklin and J. Lowengrub, Evolving interfaces via gradients of geometry-dependent interior poisson problems: Application to tumor growth, J. Comput. Phys. 203 (2005) 191–220. Crossref, Web of ScienceGoogle Scholar
    • 60. P. Macklin and J. Lowengrub, An improved geometry-aware curvature discretization for level set methods: Application to tumor growth, J. Comput. Phys. 215 (2006) 392–401. Crossref, Web of ScienceGoogle Scholar
    • 61. P. Macklin and J. S. Lowengrub, A new ghost cell/level set method for moving boundary problems: Application to tumor growth, J. Sci. Comput. 35 (2008) 266–299. Crossref, Web of ScienceGoogle Scholar
    • 62. J. T. Oden, Adaptive multiscale predictive modelling, Acta Numer. 27 (2018) 353–450. Crossref, Web of ScienceGoogle Scholar
    • 63. J. T. Oden et al., Toward predictive multiscale modeling of vascular tumor growth, Arch. Comput. Methods Eng. 23 (2016) 735–779. Crossref, Web of ScienceGoogle Scholar
    • 64. H. Pan and H. Rui, Mixed element method for two-dimensional Darcy–Forchheimer model, J. Sci. Comput. 52 (2012) 563–587. Crossref, Web of ScienceGoogle Scholar
    • 65. V. Quaranta, A. M. Weaver, P. T. Cummings and A. R. Anderson, Mathematical modeling of cancer: The future of prognosis and treatment, Clin. Chim. Acta 357 (2005) 173–179. Crossref, Web of ScienceGoogle Scholar
    • 66. K. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solids, Math. Models Methods Appl. Sci. 17 (2007) 215–252. Link, Web of ScienceGoogle Scholar
    • 67. J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics (Cambridge Univ. Press, 2001). CrossrefGoogle Scholar
    • 68. T. Roose, S. J. Chapman and P. K. Maini, Mathematical models of avascular tumor growth, SIAM Rev. 49 (2007) 179–208. Crossref, Web of ScienceGoogle Scholar
    • 69. T. Roubíček, Nonlinear Partial Differential Equations with Applications, International Series of Numerical Mathematics (Birkhäuser, 2013). CrossrefGoogle Scholar
    • 70. S. Salsa, Partial Differential Equations in Action : From Modelling to Theory (Springer-Verlag, 2016). CrossrefGoogle Scholar
    • 71. A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto and S. Tarantola, Variance based sensitivity analysis of model output: Design and estimator for the total sensitivity index, Comput. Phys. Commun. 181 (2010) 259–270. Crossref, Web of ScienceGoogle Scholar
    • 72. A. Saltelli et al., Sensitivity Analysis (Wiley, 2000). Google Scholar
    • 73. A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana and S. Tarantola, Global Sensitivity Analysis: The Primer (Wiley, 2008). Google Scholar
    • 74. J. Simon, Compact sets in the space Lp(0,T;B), Ann. Math. Pura Appl. 146 (1986) 65–96. Crossref, Web of ScienceGoogle Scholar
    • 75. J. Simon, On the existence of the pressure for solutions of the variational Navier–Stokes equations, J. Math. Fluid Methods 1 (1999) 225–234. Crossref, Web of ScienceGoogle Scholar
    • 76. I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte–Carlo estimates, Math. Comput. Simul. 55 (2001) 271–280. Crossref, Web of ScienceGoogle Scholar
    • 77. S. Srinivasan and K. Rajagopal, A thermodynamic basis for the derivation of the Darcy, Forchheimer and Brinkman models for flows through porous media and their generalizations, Int. J. Nonlinear Mech. 58 (2014) 162–166. Crossref, Web of ScienceGoogle Scholar
    • 78. C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal. 46 (2014) 1969–2007. Crossref, Web of ScienceGoogle Scholar
    • 79. W. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math. 19 (1966) 543–551. Crossref, Web of ScienceGoogle Scholar
    • 80. Z. Szymańska, C. M. Rodrigo, M. Lachowicz and M. A. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Models Methods Appl. Sci. 19 (2009) 257–281. Link, Web of ScienceGoogle Scholar
    • 81. L. Tartar, Nonlinear Partial Differential Equations using Compactness Method, Report 1584, Mathematics Research Center, University of Wisconsin (1976). Google Scholar
    • 82. R. Temam, Navier–Stokes Equations : Theory and Numerical Analysis (Amer. Math. Soc., 2001). Google Scholar
    • 83. S. M. Wise, J. S. Lowengrub and V. Cristini, An adaptive multigrid algorithm for simulating solid tumor growth using mixture models, Math. Comput. Model. 53 (2011) 1–20. Crossref, Web of ScienceGoogle Scholar
    • 84. S. M. Wise, J. S. Lowengrub, H. B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth I: Model and numerical method, J. Theor. Biol. 253 (2008) 524–543. Crossref, Web of ScienceGoogle Scholar
    • 85. X. Zheng, S. Wise and V. Cristini, Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bull. Math. Biol. 67 (2005) 211–259. Crossref, Web of ScienceGoogle Scholar
    • 86. T. Zhu, C. Waluga, B. Wohlmuth and M. Manhart, A study of the time constant in unsteady porous media flow using direct numerical simulation, Transp. Porous Media 104 (2014) 161–179. Crossref, Web of ScienceGoogle Scholar