World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Free to move or trapped in your group: Mathematical modeling of information overload and coordination in crowded populations

    https://doi.org/10.1142/S0218202518400079Cited by:14 (Source: Crossref)
    This article is part of the issue:

    We present modeling strategies that describe the motion and interaction of groups of pedestrians in obscured spaces. We start off with an approach based on balance equations in terms of measures and then we exploit the descriptive power of a probabilistic cellular automaton model.

    Based on a variation of the simple symmetric random walk on the square lattice, we test the interplay between population size and an interpersonal attraction parameter for the evacuation of confined and darkened spaces. We argue that information overload and coordination costs associated with information processing in small groups are two key processes that influence the evacuation rate. Our results show that substantial computational resources are necessary to compensate for incomplete information — the more individuals in (information processing) groups the higher the exit rate for low population size. For simple social systems, it is likely that the individual representations are not redundant and large group sizes ensure that this non-redundant information is actually available to a substantial number of individuals. For complex social systems, information redundancy makes information evaluation and transfer inefficient and, as such, group size becomes a drawback rather than a benefit. The effect of group sizes on outgoing fluxes, evacuation times and wall effects is carefully studied with a Monte Carlo framework accounting also for the presence of an internal obstacle.

    Communicated by N. Bellomo and F. Brezzi

    AMSC: 00A71, 80M31, 60J60, 92D25, 35L65

    References

    • 1. H. F. Adams, Autokinetic sensations, Psychol. Monogr. 14 (1912) 1–45. CrossrefGoogle Scholar
    • 2. J. P. Agnelli, F. Colasuonno and D. Knopoff, A kinetic theory approach to the dynamics of crowd evacuation from bounded domains, Math. Models Methods Appl. Sci. 25 (2015) 109–129. Link, Web of ScienceGoogle Scholar
    • 3. G. Albi, M. Bongini, E. Cristiani and D. Kalise, Invisible control of self-organizing agents leaving unknown environments, SIAM J. Appl. Math. 76 (2016) 1683–1710. Crossref, Web of ScienceGoogle Scholar
    • 4. D. Andreucci, D. Bellaveglia and E. N. M. Cirillo, A model for enhanced and selective transport through biological membranes with alternating pores, Math. Biosci. 257 (2014) 42–49. Crossref, Web of ScienceGoogle Scholar
    • 5. D. Andreucci, D. Bellaveglia, E. N. M. Cirillo and S. Marconi, Monte Carlo study of gating and selection in potassium channels, Phys. Rev. E 84 (2016) 021920. Crossref, Web of ScienceGoogle Scholar
    • 6. N. Bellomo, D. Clarke, L. Gibelli, P. Townsend and B. J. Vreugdenhil, Human behaviours in evacuation crowd dynamics: From modelling to “big data” toward crisis management, Phys. Life Rev. 18 (2016) 1–21. Crossref, Web of ScienceGoogle Scholar
    • 7. N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint, Math. Models Methods Appl. Sci. 22 (2012) 1230004. Link, Web of ScienceGoogle Scholar
    • 8. V. I. Bogachev, Measure Theory, Vol. 1 (Springer Verlag, 2007). CrossrefGoogle Scholar
    • 9. V. I. Bogachev, G. da Prato and M. Röckner, On parabolic equations for measures, Comm. Partial Differential Equations 33 (2008) 397–418. Crossref, Web of ScienceGoogle Scholar
    • 10. M. Böhm, Lecture Notes in Mathematical Modeling, Fachbereich Mathematik und Informatik, Universität Bremen, Germany (2012). Google Scholar
    • 11. M. Böhm and M. Höpker, A note on modelling with measures: Two-features balance equations, Math. Biosc. Eng. 12 (2015) 279–290. Crossref, Web of ScienceGoogle Scholar
    • 12. L. R. Caporael, The evolution of truly social cognition: The core configurations model, Pers. Soc. Psychol. Rev. 1 (1997) 276–298. CrossrefGoogle Scholar
    • 13. J. A. Carrillo, P. Gwiazda and A. Ulikowska, Splitting-particle methods for structured population models: Convergence and applications, Math. Models Methods Appl. Sci. 24 (2014) 2171–2197. Link, Web of ScienceGoogle Scholar
    • 14. E. N. M. Cirillo and A. Muntean, Can cooperation slow down emergency evacuations? C. R. Macanique 340 (2012) 626–628. Web of ScienceGoogle Scholar
    • 15. E. N. M. Cirillo and A. Muntean, Dynamics of pedestrians in regions with no visibility — A lattice model without exclusion, Physica A 392 (2013) 3578–3588. Crossref, Web of ScienceGoogle Scholar
    • 16. J.-F. Collet, Some modelling issues in the theory of fragmentation-coagulation systems, Commun. Math. Sci. 2 (2004) 35–54. CrossrefGoogle Scholar
    • 17. I. D. Couzin, J. Krause, N. R. Franks and S. A. Levin, Effective leadership and decision–making in animal groups on the move, Nature 433 (2005) 513–516. Crossref, Web of ScienceGoogle Scholar
    • 18. E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, Modeling, Simulation and Applications, Vol. 12 (Springer International Publishing, 2014). CrossrefGoogle Scholar
    • 19. P. L. Curşeu, O. Krehel, J. H. Evers and A. Muntean, Cognitive distance, absorptive capacity and group rationality: A simulation study, PloS One 9 (2014) e109359. Crossref, Web of ScienceGoogle Scholar
    • 20. P. L. Curşeu, R. Schalk and I. Wessel, How do virtual teams process information? A literature review and implications for management, J. Manag. Psychol. 23 (2008) 628–652. Crossref, Web of ScienceGoogle Scholar
    • 21. O. Diekmann, M. Gyllenberg, J. A. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models I. Linear Theory, J. Math. Biol. 36 (1998) 349–388. Crossref, Web of ScienceGoogle Scholar
    • 22. J. H. M. Evers, S. C. Hille and A. Muntean, Mild solutions to a measure-valued mass evolution problem with flux boundary conditions, J. Differential Equations 259 (2015) 1068–1097. Crossref, Web of ScienceGoogle Scholar
    • 23. J. H. M. Evers, S. C. Hille and A. Muntean, Mild solutions to a measure-valued mass evolution problem with flux boundary conditions, SIAM J. Math. Anal. 48 (2016) 1929–1953. Crossref, Web of ScienceGoogle Scholar
    • 24. M. Gyllenberg, Mathematical aspects of physiologically structured populations: The contributions of J. A. J. Metz, J. Biol. Dyn. 1 (2007) 3–44. CrossrefGoogle Scholar
    • 25. S. Haret, Mécanique Sociale (Gauthier-Villars, 1910). Google Scholar
    • 26. V. Hinsz, Teams as technology: Strengths, weaknesses, and trade-offs in cognitive task performance, Team Perform. Manag. 21 (2015) 218–230. Crossref, Web of ScienceGoogle Scholar
    • 27. A. G. Ingham, G. Levinger, J. Graves and V. Peckham, The Ringelmann effect: Studies of group size and group performance, J. Exp. Soc. Psychol. 10 (1974) 371–384. Crossref, Web of ScienceGoogle Scholar
    • 28. B. Latané and J. M. Darley, Group inhibition of bystander intervention in emergencies, J. Pers. Soc. Psychol. 10 (2016) 215. Crossref, Web of ScienceGoogle Scholar
    • 29. G. Le Bon, La psychologie des foules, The Echo Library, Middlesex (2008). Google Scholar
    • 30. W. Mitchener, Mean-field and measure-valued differential equation models for language variation and change in a spatially distributed population, SIAM J. Math. Anal. 42 (2010) 1899–1933. Crossref, Web of ScienceGoogle Scholar
    • 31. R. L. Moreland, Are dyads really groups? Small Group Res. 41 (2010) 251–267. Crossref, Web of ScienceGoogle Scholar
    • 32. J. S. Mueller, Why individuals in larger teams perform worse, Organ. Behav. Human Decis. Process. 117 (2012) 111–124. Crossref, Web of ScienceGoogle Scholar
    • 33. F. Müller, O. Wohak and A. Schadschneider, Study of influence of groups on evacuation dynamics using a cellular automaton model, Transp. Res. Proc. 2 (2014) 168–176. CrossrefGoogle Scholar
    • 34. A. Muntean, E. N. M. Cirillo, O. Krehel and M. Böhm, Pedestrians moving in the dark: Balancing measures and playing games on lattices, in Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation, CISM Lectures, Vol. 553 (Springer, 2014). CrossrefGoogle Scholar
    • 35. G. A. Pavliotis, Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and Langevin Equations, Texts in Applied Mathematics, Vol. 60 (Springer Verlag, 2014). CrossrefGoogle Scholar
    • 36. B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal. 199 (2011) 707–738. Crossref, Web of ScienceGoogle Scholar
    • 37. A. Portuondo y Barceló, Apuntes sobre Mecánica Social. Establecimiento Topográfico Editorial, Madrid (1912). Google Scholar
    • 38. F. Schuricht, A new mathematical foundation for contact interactions in continuum physics, Arch. Ration. Mech. Anal. 433 (2007) 169–196. Google Scholar
    • 39. M. Sherif, A study of some social factors in perception, Arch. Psychol. 27 (1935) 23–46. Google Scholar
    • 40. J.-H. Wang and J.-H. Sun. Principal aspects regarding to the emergency evacuation of large-scale crowds: A brief review of literatures until 2010, Procedia Eng. 71 (2014) 1–6. CrossrefGoogle Scholar
    • 41. S. Xue, B. Jia, R. Jiang and J. Shan, Pedestrian evacuation in view and hearing limited condition: The impact of communication and memory, Phys. Lett. A 380 (2016) 3029–3035. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!