Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines
Abstract
We consider an adaptive algorithm for finite element methods for the isogeometric analysis (IGAFEM) of elliptic (possibly non-symmetric) second-order partial differential equations in arbitrary space dimension . We employ hierarchical B-splines of arbitrary degree and different order of smoothness. We propose a refinement strategy to generate a sequence of locally refined meshes and corresponding discrete solutions. Adaptivity is driven by some weighted residual a posteriori error estimator. We prove linear convergence of the error estimator (respectively, the sum of energy error plus data oscillations) with optimal algebraic rates. Numerical experiments underpin the theoretical findings.
Communicated by F. Brezzi
References
- 1. , A posteriori Error Estimation in Finite Element Analysis,
Pure and Applied Mathematics (John Wiley & Sons, 2000). Crossref, Google Scholar - 2. , Estimator reduction and convergence of adaptive BEM, Appl. Numer. Math. 62 (2012) 787–801. Crossref, Web of Science, Google Scholar
- 3. , Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci. 16 (2006) 1031–1090. Link, Web of Science, Google Scholar
- 4. , Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199–214. Link, Web of Science, Google Scholar
- 5. , Analysis-suitable T-splines of arbitrary degree: Definition, linear independence and approximation properties, Math. Models Methods Appl. Sci. 23 (2013) 1979–2003. Link, Web of Science, Google Scholar
- 6. , Mathematical analysis of variational isogeometric methods, Acta Numerica 23 (2014) 157–287. Crossref, Web of Science, Google Scholar
- 7. , Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems, Comput. Methods Appl. Mech. Eng. 317 (2017) 318–340. Crossref, Web of Science, Google Scholar
- 8. , Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004) 219–268. Crossref, Web of Science, Google Scholar
- 9. A. Buffa and E. M. Garau, A posteriori error estimators for hierarchical B-spline discretizations, preprint (2016), arXiv:1611.07816. Google Scholar
- 10. , Refinable spaces and local approximation estimates for hierarchical splines, IMA J. Numer. Anal. 37 (2016) 1125–1149. Web of Science, Google Scholar
- 11. , Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence, Math. Models Methods Appl. Sci. 26 (2016) 1–25. Link, Web of Science, Google Scholar
- 12. A. Buffa and C. Giannelli, Adaptive Isogeometric Methods with Hierarchical Splines: Optimality and Convergence Rates, Technical Report (École Polytechnique Fédérale de Lausanne, March, 2017). Google Scholar
- 13. , Complexity of hierarchical refinement for a class of admissible mesh configurations, Comput.-Aided Geom. Design 47 (2016) 83–92. Crossref, Web of Science, Google Scholar
- 14. , Axioms of adaptivity, Comput. Math. Appl. 67 (2014) 1195–1253. Crossref, Web of Science, Google Scholar
- 15. , Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008) 2524–2550. Crossref, Web of Science, Google Scholar
- 16. , Isogeometric Analysis: Toward Integration of CAD and FEA (John Wiley & Sons, 2009). Crossref, Google Scholar
- 17. , A Practical Guide to Splines, rev. edn. (Springer, 2001). Google Scholar
- 18. , Polynomial splines over locally refined box-partitions, Comput.-Aided Geom. Design 30 (2013) 331–356. Crossref, Web of Science, Google Scholar
- 19. , A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996) 1106–1124. Crossref, Web of Science, Google Scholar
- 20. C. Erath, Adaptive Finite Volumen Methode, Master’s Thesis (Institute for Analysis and Scientific Computing, TU Wien, 2005). Google Scholar
- 21. , Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems, SIAM J. Numer. Anal. 52 (2014) 601–625. Crossref, Web of Science, Google Scholar
- 22. , Adaptive 2D IGA boundary element methods, Eng. Anal. Bound. Element 62 (2016) 141–153. Crossref, Web of Science, Google Scholar
- 23. , Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations, Numer. Math. 136 (2017) 147–182. Crossref, Web of Science, Google Scholar
- 24. , Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations, Comput. Methods Appl. Mech. Eng. 290 (2015) 362–386. Crossref, Web of Science, Google Scholar
- 25. , Convergence rates for adaptive finite elements, IMA J. Numer. Anal. 29 (2008) 917–936. Crossref, Web of Science, Google Scholar
- 26. , THB-splines: The truncated basis for hierarchical splines, Comput.-Aided Geom. Design 29 (2012) 485–498. Crossref, Web of Science, Google Scholar
- 27. , Strongly stable bases for adaptively refined multilevel spline spaces, Adv. Comput. Math. 40 (2014) 459–490. Crossref, Web of Science, Google Scholar
- 28. , Adaptive mesh refinement strategies in isogeometric analysis — A computational comparison, Comput. Methods Appl. Mech. Eng. 316 (2017) 424–448. Crossref, Web of Science, Google Scholar
- 29. , Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng. 194 (2005) 4135–4195. Crossref, Web of Science, Google Scholar
- 30. , Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Eng. 269 (2014) 471–514. Crossref, Web of Science, Google Scholar
- 31. , On the similarities and differences between classical hierarchical, truncated hierarchical and LR B-splines, Comput. Methods Appl. Mech. Eng. 291 (2015) 64–101. Crossref, Web of Science, Google Scholar
- 32. , Goal-adaptive isogeometric analysis with hierarchical splines, Comput. Methods Appl. Mech. Eng. 270 (2014) 270–292. Crossref, Web of Science, Google Scholar
- 33. , Globally structured three-dimensional analysis-suitable T-splines: Definition, linear independence and -graded local refinement, SIAM J. Numer. Anal. 54 (2016) 2163–2186. Crossref, Web of Science, Google Scholar
- 34. , Analysis-suitable adaptive T-mesh refinement with linear complexity, Comput.-Aided Geom. Design 34 (2015) 50–66. Crossref, Web of Science, Google Scholar
- 35. , Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000) 466–488. Crossref, Web of Science, Google Scholar
- 36. ,
Primer of adaptive finite element methods , in Multiscale and Adaptivity: Modeling, Numerics and Applications,Lecture Notes in Mathematics , Vol. 2040 (Springer 2012), pp. 125–225. Google Scholar - 37. , Functional Analysis, 2nd edn. (McGraw-Hill, 1991). Google Scholar
- 38. S. Schimanko, Adaptive Isogeometric Boundary Element Method for the Hyper-Singular Integral Equation, Master’s Thesis (Institute for Analysis and Scientific Computing, TU Wien, 2016). Google Scholar
- 39. , Spline Functions: Basic Theory (Cambridge Univ. Press, 2007). Crossref, Google Scholar
- 40. , Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Eng. 213 (2012) 206–222. Crossref, Web of Science, Google Scholar
- 41. , Effortless quasi-interpolation in hierarchical spaces, Numer. Math. 132 (2016) 155–184. Crossref, Web of Science, Google Scholar
- 42. , Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007) 245–269. Crossref, Web of Science, Google Scholar
- 43. , The completion of locally refined simplicial partitions created by bisection, Math. Comput. 77 (2008) 227–241. Crossref, Web of Science, Google Scholar
- 44. , A posteriori Error Estimation Techniques for Finite Element Methods (Oxford Univ. Press, 2013). Crossref, Google Scholar
- 45. , A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Eng. 200 (2011) 3554–3567. Crossref, Web of Science, Google Scholar