World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines

    https://doi.org/10.1142/S0218202517500543Cited by:26 (Source: Crossref)

    We consider an adaptive algorithm for finite element methods for the isogeometric analysis (IGAFEM) of elliptic (possibly non-symmetric) second-order partial differential equations in arbitrary space dimension d2. We employ hierarchical B-splines of arbitrary degree and different order of smoothness. We propose a refinement strategy to generate a sequence of locally refined meshes and corresponding discrete solutions. Adaptivity is driven by some weighted residual a posteriori error estimator. We prove linear convergence of the error estimator (respectively, the sum of energy error plus data oscillations) with optimal algebraic rates. Numerical experiments underpin the theoretical findings.

    Communicated by F. Brezzi

    AMSC: 41A15, 65D07, 65N12, 65N30

    References

    • 1. M. Ainsworth and J. T. Oden, A posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics (John Wiley & Sons, 2000). CrossrefGoogle Scholar
    • 2. M. Aurada, S. Ferraz-Leite and D. Praetorius, Estimator reduction and convergence of adaptive BEM, Appl. Numer. Math. 62 (2012) 787–801. Crossref, Web of ScienceGoogle Scholar
    • 3. Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, T. J. R. Hughes and G. Sangalli, Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci. 16 (2006) 1031–1090. Link, Web of ScienceGoogle Scholar
    • 4. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Donatella Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199–214. Link, Web of ScienceGoogle Scholar
    • 5. L. Beirão da Veiga, A. Buffa, G. Sangalli and R. Vázquez, Analysis-suitable T-splines of arbitrary degree: Definition, linear independence and approximation properties, Math. Models Methods Appl. Sci. 23 (2013) 1979–2003. Link, Web of ScienceGoogle Scholar
    • 6. L. Beirão da Veiga, A. Buffa, G. Sangalli and R. Vázquez, Mathematical analysis of variational isogeometric methods, Acta Numerica 23 (2014) 157–287. Crossref, Web of ScienceGoogle Scholar
    • 7. A. Bespalov, A. Haberl and D. Praetorius, Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems, Comput. Methods Appl. Mech. Eng. 317 (2017) 318–340. Crossref, Web of ScienceGoogle Scholar
    • 8. P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004) 219–268. Crossref, Web of ScienceGoogle Scholar
    • 9. A. Buffa and E. M. Garau, A posteriori error estimators for hierarchical B-spline discretizations, preprint (2016), arXiv:1611.07816. Google Scholar
    • 10. A. Buffa and E. M. Garau, Refinable spaces and local approximation estimates for hierarchical splines, IMA J. Numer. Anal. 37 (2016) 1125–1149. Web of ScienceGoogle Scholar
    • 11. A. Buffa and C. Giannelli, Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence, Math. Models Methods Appl. Sci. 26 (2016) 1–25. Link, Web of ScienceGoogle Scholar
    • 12. A. Buffa and C. Giannelli, Adaptive Isogeometric Methods with Hierarchical Splines: Optimality and Convergence Rates, Technical Report (École Polytechnique Fédérale de Lausanne, March, 2017). Google Scholar
    • 13. A. Buffa, C. Giannelli, P. Mørgenstern and D. Peterseim, Complexity of hierarchical refinement for a class of admissible mesh configurations, Comput.-Aided Geom. Design 47 (2016) 83–92. Crossref, Web of ScienceGoogle Scholar
    • 14. C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014) 1195–1253. Crossref, Web of ScienceGoogle Scholar
    • 15. J. M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008) 2524–2550. Crossref, Web of ScienceGoogle Scholar
    • 16. J. A. Cottrell, T. J. R. Hughes and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (John Wiley & Sons, 2009). CrossrefGoogle Scholar
    • 17. C. De Boor, A Practical Guide to Splines, rev. edn. (Springer, 2001). Google Scholar
    • 18. T. Dokken, T. Lyche and K. F. Pettersen, Polynomial splines over locally refined box-partitions, Comput.-Aided Geom. Design 30 (2013) 331–356. Crossref, Web of ScienceGoogle Scholar
    • 19. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996) 1106–1124. Crossref, Web of ScienceGoogle Scholar
    • 20. C. Erath, Adaptive Finite Volumen Methode, Master’s Thesis (Institute for Analysis and Scientific Computing, TU Wien, 2005). Google Scholar
    • 21. M. Feischl, T. Führer and D. Praetorius, Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems, SIAM J. Numer. Anal. 52 (2014) 601–625. Crossref, Web of ScienceGoogle Scholar
    • 22. M. Feischl, G. Gantner, A. Haberl and D. Praetorius, Adaptive 2D IGA boundary element methods, Eng. Anal. Bound. Element 62 (2016) 141–153. Crossref, Web of ScienceGoogle Scholar
    • 23. M. Feischl, G. Gantner, A. Haberl and D. Praetorius, Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations, Numer. Math. 136 (2017) 147–182. Crossref, Web of ScienceGoogle Scholar
    • 24. M. Feischl, G. Gantner and D. Praetorius, Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations, Comput. Methods Appl. Mech. Eng. 290 (2015) 362–386. Crossref, Web of ScienceGoogle Scholar
    • 25. F. D. Gaspoz and P. Morin, Convergence rates for adaptive finite elements, IMA J. Numer. Anal. 29 (2008) 917–936. Crossref, Web of ScienceGoogle Scholar
    • 26. C. Giannelli, B. Jüttler and H. Speleers, THB-splines: The truncated basis for hierarchical splines, Comput.-Aided Geom. Design 29 (2012) 485–498. Crossref, Web of ScienceGoogle Scholar
    • 27. C. Giannelli, B. Jüttler and H. Speleers, Strongly stable bases for adaptively refined multilevel spline spaces, Adv. Comput. Math. 40 (2014) 459–490. Crossref, Web of ScienceGoogle Scholar
    • 28. P. Hennig, M. Kästner, P. Mørgenstern and D. Peterseim, Adaptive mesh refinement strategies in isogeometric analysis — A computational comparison, Comput. Methods Appl. Mech. Eng. 316 (2017) 424–448. Crossref, Web of ScienceGoogle Scholar
    • 29. T. J. R. Hughes, J. A. Cottrell and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng. 194 (2005) 4135–4195. Crossref, Web of ScienceGoogle Scholar
    • 30. K. A. Johannessen, T. Kvamsdal and T. Dokken, Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Eng. 269 (2014) 471–514. Crossref, Web of ScienceGoogle Scholar
    • 31. K. A. Johannessen, F. Remonato and T. Kvamsdal, On the similarities and differences between classical hierarchical, truncated hierarchical and LR B-splines, Comput. Methods Appl. Mech. Eng. 291 (2015) 64–101. Crossref, Web of ScienceGoogle Scholar
    • 32. G. Kuru, C. V. Verhoosel, K. G. Van der Zee and E. Harald van Brummelen, Goal-adaptive isogeometric analysis with hierarchical splines, Comput. Methods Appl. Mech. Eng. 270 (2014) 270–292. Crossref, Web of ScienceGoogle Scholar
    • 33. P. Mørgenstern, Globally structured three-dimensional analysis-suitable T-splines: Definition, linear independence and m-graded local refinement, SIAM J. Numer. Anal. 54 (2016) 2163–2186. Crossref, Web of ScienceGoogle Scholar
    • 34. P. Mørgenstern and D. Peterseim, Analysis-suitable adaptive T-mesh refinement with linear complexity, Comput.-Aided Geom. Design 34 (2015) 50–66. Crossref, Web of ScienceGoogle Scholar
    • 35. P. Morin, R. H. Nochetto and K. G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000) 466–488. Crossref, Web of ScienceGoogle Scholar
    • 36. R. H. Nochetto and A. Veeser, Primer of adaptive finite element methods, in Multiscale and Adaptivity: Modeling, Numerics and Applications, Lecture Notes in Mathematics, Vol. 2040 (Springer 2012), pp. 125–225. Google Scholar
    • 37. W. Rudin, Functional Analysis, 2nd edn. (McGraw-Hill, 1991). Google Scholar
    • 38. S. Schimanko, Adaptive Isogeometric Boundary Element Method for the Hyper-Singular Integral Equation, Master’s Thesis (Institute for Analysis and Scientific Computing, TU Wien, 2016). Google Scholar
    • 39. L. Schumaker, Spline Functions: Basic Theory (Cambridge Univ. Press, 2007). CrossrefGoogle Scholar
    • 40. M. A. Scott, X. Li, T. W. Sederberg and T. J. R. Hughes, Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Eng. 213 (2012) 206–222. Crossref, Web of ScienceGoogle Scholar
    • 41. H. Speleers and C. Manni, Effortless quasi-interpolation in hierarchical spaces, Numer. Math. 132 (2016) 155–184. Crossref, Web of ScienceGoogle Scholar
    • 42. R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007) 245–269. Crossref, Web of ScienceGoogle Scholar
    • 43. R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comput. 77 (2008) 227–241. Crossref, Web of ScienceGoogle Scholar
    • 44. R. Verfürth, A posteriori Error Estimation Techniques for Finite Element Methods (Oxford Univ. Press, 2013). CrossrefGoogle Scholar
    • 45. A.-V. Vuong, C. Giannelli, B. Jüttler and B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Eng. 200 (2011) 3554–3567. Crossref, Web of ScienceGoogle Scholar