World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Electromagnetic wave scattering by random surfaces: Shape holomorphy

    https://doi.org/10.1142/S0218202517500439Cited by:33 (Source: Crossref)

    For time-harmonic electromagnetic waves scattered by either perfectly conducting or dielectric bounded obstacles, we show that the fields depend holomorphically on the shape of the scatterer. In the presence of random geometrical perturbations, our results imply strong measurability of the fields, in weighted spaces in the exterior of the scatterer. These findings are key to prove dimension-independent convergence rates of sparse approximation techniques of polynomial chaos type for forward and inverse computational uncertainty quantification. Also, our shape-holomorphy results imply parsimonious approximate representations of the corresponding parametric solution families, which are produced, for example, by greedy strategies such as model order reduction or reduced basis approximations. Finally, the presently proved shape holomorphy results imply convergence of shape Taylor expansions of far-field patterns for fixed amplitude domain perturbations in a vicinity of the nominal domain, thereby extending the widely used asymptotic linearizations employed in first-order, second moment domain uncertainty quantification.

    Communicated by F. Brezzi

    AMSC: 35A20, 35B30, 32D05, 35Q61

    References

    • 1. C. Amrouche, V. Girault and J. Giroire, Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator: An approach in weighted Sobolev spaces, J. Math. Pures Appl. 76 (1997) 55–81. Crossref, Web of ScienceGoogle Scholar
    • 2. J. M. Ball, Y. Capdeboscq and B. Tsering-Xiao, On uniqueness for time harmonic anisotropic Maxwell’s equations with piecewise regular coefficients, Math. Models Methods Appl. Sci. 22 (2012) 1250036. Link, Web of ScienceGoogle Scholar
    • 3. K. Beddek, Y. Le Menach, S. Clenet and O. Moreau, 3-D stochastic spectral finite-element method in static electromagnetism using vector potential formulation, IEEE Trans. Magnetics 47 (2011) 1250–1253. Crossref, Web of ScienceGoogle Scholar
    • 4. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, Vol. 44 (Springer, 2013). CrossrefGoogle Scholar
    • 5. A. Buffa, M. Costabel and D. Sheen, On traces for H(curl,Ω) in Lipschitz domains, J. Math. Anal. Appl. 276 (2002) 845–867. Crossref, Web of ScienceGoogle Scholar
    • 6. A. Buffa and R. Hiptmair, Galerkin boundary element methods for electromagnetic scattering, in Topics in Computational Wave Propagation, Lecture Notes in Computational Science and Engineering, Vol. 31 (Springer, 2003), pp. 83–124. CrossrefGoogle Scholar
    • 7. J. Castrillón-Candás, F. Nobile and R. Tempone, Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations, Comput. Math. Appl. 71 (2016) 1173–1197. Crossref, Web of ScienceGoogle Scholar
    • 8. M. Cessenat, Mathematical Methods in Electromagnetism: Linear Theory and Applications Series, Advances in Mathematics for Applied Sciences, Vol. 41 (World Scientific, 1996). LinkGoogle Scholar
    • 9. C. Chauvière, J. S. Hesthaven, and L. Lurati, Computational modeling of uncertainty in time-domain electromagnetics, SIAM J. Sci. Comput. 28 (2006) 751–775. Crossref, Web of ScienceGoogle Scholar
    • 10. P. Chen and C. Schwab, Model order reduction methods in computational uncertainty quantification, in Handbook of Uncertainty Quantification (Springer, 2016), pp. 1–53. Google Scholar
    • 11. P. Chen and C. Schwab, Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations, J. Comput. Phys. 316 (2016) 470–503. Crossref, Web of ScienceGoogle Scholar
    • 12. A. Chernov and C. Schwab, First order k-th moment finite element analysis of nonlinear operator equations with stochastic data, Math. Comput. 82 (2013) 1859–1888. Crossref, Web of ScienceGoogle Scholar
    • 13. A. Chkifa, A. Cohen, R. DeVore and C. Schwab, Adaptive algorithms for sparse polynomial approximation of parametric and stochastic elliptic PDEs, Math. Models Numer. Anal. 47 (2013) 253–280. Crossref, Web of ScienceGoogle Scholar
    • 14. A. Chkifa, A. Cohen and C. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs, J. Found. Comput. Math. 14 (2013) 601–633. Crossref, Web of ScienceGoogle Scholar
    • 15. A. Cohen, Numerical Analysis of Wavelet Methods, Studies in Mathematics and Its Applications (North-Holland, 2003). Google Scholar
    • 16. A. Cohen, A. Chkifa and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs, J. Math. Pures Appl. 103 (2015) 400–428. Crossref, Web of ScienceGoogle Scholar
    • 17. A. Cohen, C. Schwab and J. Zech, Shape holomorphy of the stationary Navier–Stokes equations, Technical Report 2016-45, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2016). Google Scholar
    • 18. M. Dambrine, H. Harbrecht and B. Puig, Computing quantities of interest for random domains with second order shape sensitivity analysis, ESAIM Math. Model. Numer. Anal. 49 (2015) 1285–1302. Crossref, Web of ScienceGoogle Scholar
    • 19. I. Daubechies, Ten Lectures on Wavelets, CBMS–NSF Regional Conference Series in Applied Mathematics, Vol. 61 (Society for Industrial and Applied Mathematics, 1992). CrossrefGoogle Scholar
    • 20. C. de Boor, A Practical Guide to Splines, Applied Mathematical Sciences, Vol. 27, (Springer-Verlag, 2001). Google Scholar
    • 21. J. Dick, R. N. Gantner, Q. T. Le Gia and C. Schwab, Multilevel higher-order quasi-Monte Carlo Bayesian estimation, Math. Models Method Appl. Sci. 27 (2017) 953–995. Link, Web of ScienceGoogle Scholar
    • 22. J. Dick, Q. T. Le Gia and C. Schwab, Higher-order quasi-Monte Carlo integration for holomorphic, parametric operator equations, SIAM J. Uncertainty Quantif. 4 (2016) 48–79. CrossrefGoogle Scholar
    • 23. Y. Du, Y. Luo and J.-A. Kong, Electromagnetic scattering from randomly rough surfaces using the stochastic second-degree method and the sparse matrix/canonical grid algorithm, Geoscience and Remote Sensing, IEEE Trans. 46 (2008) 2831–2839. Crossref, Web of ScienceGoogle Scholar
    • 24. R. N. Gantner and M. D. Peters, Higher order quasi-Monte Carlo for Bayesian shape inversion, Technical Report 2016-42, Seminar for Applied Mathematics, ETH Zürich (2016). Google Scholar
    • 25. H. Harbrecht, M. Peters and M. Siebenmorgen, Analysis of the domain mapping method for elliptic diffusion problems on random domains, Numer. Math. 134 (2016) 823–856. Crossref, Web of ScienceGoogle Scholar
    • 26. H. Harbrecht, R. Schneider and C. Schwab, Sparse second moment analysis for elliptic problems in stochastic domains, Numer. Math. 109 (2008) 385–414. Crossref, Web of ScienceGoogle Scholar
    • 27. F. Hettlich, The domain derivative of time-harmonic electromagnetic waves at interfaces, Math. Methods Appl. Sci. 35 (2012) 1681–1689. Crossref, Web of ScienceGoogle Scholar
    • 28. L. Hörmander, An Introduction to Complex Analysis in Several Variables, 3rd edn., North-Holland Mathematical Library, Vol. 7 (North-Holland, 1990). Google Scholar
    • 29. C. Jerez-Hanckes and C. Schwab, Electromagnetic wave scattering by random surfaces: Uncertainty quantification via sparse tensor boundary elements, IMA J. Numer. Anal. 37 (2017) 1175–1210. Web of ScienceGoogle Scholar
    • 30. P. Li, An inverse cavity problem for Maxwell’s equations, J. Differential Equations 252 (2012) 3209–3225. Crossref, Web of ScienceGoogle Scholar
    • 31. P. Monk, Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation (Oxford Univ. Press, 2003). CrossrefGoogle Scholar
    • 32. M. Motamed, F. Nobile and R. Tempone, Analysis and computation of the elastic wave equation with random coefficients, Comput. Math. Appl. 70 (2015) 2454–2473. Crossref, Web of ScienceGoogle Scholar
    • 33. J.-C. Nédélec, Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems, Applied Mathematical Sciences, Vol. 144 (Springer-Verlag, 2001). CrossrefGoogle Scholar
    • 34. T. Nguyen and J.-N. Wang, Quantitative uniqueness estimate for the Maxwell system with Lipschitz anisotropic media, Proc. Amer. Math. Soc. 140 (2012) 595–605. Crossref, Web of ScienceGoogle Scholar
    • 35. A. A. Novotny and J. Sokołowski, Topological Derivatives in Shape Optimization, Interaction of Mechanics and Mathematics (Springer, 2013). CrossrefGoogle Scholar
    • 36. T. Ōkaji, Strong unique continuation property for time harmonic Maxwell equations, J. Math. Soc. Japan 54 (2002) 89–122. Crossref, Web of ScienceGoogle Scholar
    • 37. L. Piegl and W. Tiller, The NURBS Book (Springer, 2012). Google Scholar
    • 38. R. Potthast, Domain derivatives in electromagnetic scattering, Math. Methods Appl. Sci. 19 (1996) 1157–1175. Crossref, Web of ScienceGoogle Scholar
    • 39. C. Schillings and C. Schwab, Sparse, adaptive Smolyak quadratures for Bayesian inverse problems, Inverse Prob. 29 (2013) 065011. Crossref, Web of ScienceGoogle Scholar
    • 40. C. Schillings and C. Schwab, Sparsity in Bayesian inversion of parametric operator equations, Inverse Prob. 30 (2014) 065007. Crossref, Web of ScienceGoogle Scholar
    • 41. J. Sokolowski and J.-P. Zolésio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Series in Computational Mathematics (Springer-Verlag, 1992). CrossrefGoogle Scholar
    • 42. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, Vol. 30 (Princeton Univ. Press, 1970). Google Scholar
    • 43. O. O. Sy, M. C. van Beurden, B. L. Michielsen, J. A. H. M. Vaessen and A. G. Tijhuis, Second-order statistics of complex observables in fully stochastic electromagnetic interactions: Applications to EMC, Radio Sci. 45 (2010) RS4004-1/16. Crossref, Web of ScienceGoogle Scholar
    • 44. M. E. Taylor, Measure Theory and Integration, Graduate Studies in Mathematics (Amer. Math. Soc., 2006). CrossrefGoogle Scholar
    • 45. V. Vogelsang, On the strong unique continuation principle for inequalities of Maxwell type, Math. Ann. 289 (1991) 285–295. Crossref, Web of ScienceGoogle Scholar
    • 46. J. Zech and C. Schwab, Convergence Rates of High-Dimensional Smolyak Quadrature, Technical Report 2017-27, Seminar for Applied Mathematics (2017). Google Scholar