World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Symmetry breaking in indented elastic cones

    https://doi.org/10.1142/S0218202517500026Cited by:7 (Source: Crossref)

    Motivated by simulations of carbon nanocones (see [S. P. Jordan and V. H. Crespi, Theory of carbon nanocones: Mechanical chiral inversion of a micron-scale three-dimensional object, Phys. Rev. Lett.93 (2004) 255504]), we consider a variational plate model for an elastic cone under compression in the direction of the cone symmetry axis. Assuming radial symmetry, and modeling the compression by suitable Dirichlet boundary conditions at the center and the boundary of the sheet, we identify the energy scaling law in the von Kármán plate model. Specifically, we find that three different regimes arise with increasing indentation δ: initially the energetic cost of the logarithmic singularity dominates, then there is a linear response corresponding to a moderate deformation close to the boundary of the cone, and for larger δ a localized inversion takes place in the central region. Then, we show that for large enough indentations minimizers of the elastic energy cannot be radially symmetric. We do so by an explicit construction that achieves lower elastic energy than the minimum amount possible for radially symmetric deformations.

    Communicated by I. Fonseca

    AMSC: 49Q10, 74K20

    References

    • 1. B. Audoly and Y. Pomeau, Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells (Oxford Univ. Press, 2010). Google Scholar
    • 2. J. Bedrossian and R. V. Kohn, Blister patterns and energy minimization in compressed thin films on compliant substrates, Comm. Pure Appl. Math. 68 (2015) 472–510. Crossref, Web of ScienceGoogle Scholar
    • 3. H. Ben Belgacem, S. Conti, A. DeSimone and S. Müller, Rigorous bounds for the Föppl–von Kármán theory of isotropically compressed plates, J. Nonlinear Sci. 10 (2000) 661–683. Crossref, Web of ScienceGoogle Scholar
    • 4. H. Ben Belgacem, S. Conti, A. DeSimone and S. Müller, Energy scaling of compressed elastic films, Arch. Ration. Mech. Anal. 164 (2002) 1–37. Crossref, Web of ScienceGoogle Scholar
    • 5. J. Brandman, R. V. Kohn and H.-M. Nguyen, Energy scaling laws for conically constrained thin elastic sheets, J. Elasticity 113 (2013) 251–264. Crossref, Web of ScienceGoogle Scholar
    • 6. R. Choksi, S. Conti, R. V. Kohn and F. Otto, Ground state energy scaling laws during the onset and destruction of the intermediate state in a type I superconductor, Comm. Pure Appl. Math. 61 (2008) 595–626. Crossref, Web of ScienceGoogle Scholar
    • 7. R. Choksi, R. V. Kohn and F. Otto, Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy, Commun. Math. Phys. 201 (1999) 61–79. Crossref, Web of ScienceGoogle Scholar
    • 8. R. Choksi, R. V. Kohn and F. Otto, Energy minimization and flux domain structure in the intermediate state of a type-I superconductor, J. Nonlinear Sci. 14 (2004) 119–171. Crossref, Web of ScienceGoogle Scholar
    • 9. P. G. Ciarlet, A justification of the von Kármán equations, Arch. Ration. Mech. Anal. 73 (1980) 349–389. Crossref, Web of ScienceGoogle Scholar
    • 10. P. G. Ciarlet, Mathematical Elasticity. Vol. II, Theory of Plates, Studies in Mathematics and Its Applications, Vol. 27 (North-Holland, 1997). Google Scholar
    • 11. S. Conti and F. Maggi, Confining thin elastic sheets and folding paper, Arch. Ration. Mech. Anal. 187 (2008) 1–48. Google Scholar
    • 12. M. S. Dresselhaus, Future directions in carbon science, Ann. Rev. Mater. Sci. 27 (1997) 1–34. Crossref, Web of ScienceGoogle Scholar
    • 13. G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002) 1461–1506. Crossref, Web of ScienceGoogle Scholar
    • 14. G. Friesecke, R. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal. 180 (2006) 183–236. Crossref, Web of ScienceGoogle Scholar
    • 15. M. Ge and K. Sattler, Observation of fullerene cones, Chem. Phys. Lett. 220 (1994) 192–196. Crossref, Web of ScienceGoogle Scholar
    • 16. A. K. Geim, Graphene: Status and prospects, Science 324 (2009) 1530–1534. Crossref, Web of ScienceGoogle Scholar
    • 17. S. Guo and S. Dong, Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev. 40 (2011) 2644–2672. Crossref, Web of ScienceGoogle Scholar
    • 18. W. Jin and P. Sternberg, Energy estimates of the von Kármán model of thin-film blistering, J. Math. Phys. 42 (2001) 192–199. Crossref, Web of ScienceGoogle Scholar
    • 19. S. P. Jordan and V. H. Crespi, Theory of carbon nanocones: Mechanical chiral inversion of a micron-scale three-dimensional object, Phys. Rev. Lett. 93 (2004) 255504. Crossref, Web of ScienceGoogle Scholar
    • 20. R. V. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions, Comm. Pure Appl. Math. 47 (1994) 405–435. Crossref, Web of ScienceGoogle Scholar
    • 21. R. Kohn and S. Müller, Branching of twins near an austenite-twinned martensite interface, Philos. Magn. A 66 (1992) 697–715. Crossref, Web of ScienceGoogle Scholar
    • 22. A. Krishnan, E. Dujardin, M. Treacy, J. Hugdahl, S. Lynum and T. Ebbesen, Graphitic cones and the nucleation of curved carbon surfaces, Nature 388 (1997) 451–454. Crossref, Web of ScienceGoogle Scholar
    • 23. H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. 74 (1995) 549–578. Web of ScienceGoogle Scholar
    • 24. C. Lee, X. Wei, J. W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385–388. Crossref, Web of ScienceGoogle Scholar
    • 25. Q. Lu, M. Arroyo and R. Huang, Elastic bending modulus of monolayer graphene, J. Phys. D: Appl. Phys. 42 (2009) 102002. Crossref, Web of ScienceGoogle Scholar
    • 26. V. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 342 (Springer, 2011). CrossrefGoogle Scholar
    • 27. S. Müller and H. Olbermann, Conical singularities in thin elastic sheets, Calc. Var. Partial Differential Equations 49 (2014) 1177–1186. Crossref, Web of ScienceGoogle Scholar
    • 28. H. Olbermann, Energy scaling law for a single disclination in a thin elastic sheet, preprint (2015), arXiv:1509.07378. Google Scholar
    • 29. H. Ruan, Z. Gao and T. Yu, Crushing of thin-walled spheres and sphere arrays, Int. J. Mech. Sci. 48 (2006) 117–133. Crossref, Web of ScienceGoogle Scholar
    • 30. O. A. Shenderova, B. L. Lawson, D. Areshkin and D. W. Brenner, Predicted structure and electronic properties of individual carbon nanocones and nanostructures assembled from nanocones, Nanotechnology 12 (2001) 191. Crossref, Web of ScienceGoogle Scholar
    • 31. S. C. Venkataramani, Lower bounds for the energy in a crumpled elastic sheet — A minimal ridge, Nonlinearity 17 (2004) 301–312. Crossref, Web of ScienceGoogle Scholar
    • 32. T. A. Witten, Stress focusing in elastic sheets, Rev. Mod. Phys. 79 (2007) 643–675. Crossref, Web of ScienceGoogle Scholar
    • 33. B. I. Yakobson, C. Brabec and J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond linear response, Phys. Rev. Lett. 76 (1996) 2511. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!