World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue on Modeling Behavioral Social SystemsNo Access

A consensus-based model for global optimization and its mean-field limit

    https://doi.org/10.1142/S0218202517400061Cited by:81 (Source: Crossref)

    We introduce a novel first-order stochastic swarm intelligence (SI) model in the spirit of consensus formation models, namely a consensus-based optimization (CBO) algorithm, which may be used for the global optimization of a function in multiple dimensions. The CBO algorithm allows for passage to the mean-field limit, which results in a nonstandard, nonlocal, degenerate parabolic partial differential equation (PDE). Exploiting tools from PDE analysis we provide convergence results that help to understand the asymptotic behavior of the SI model. We further present numerical investigations underlining the feasibility of our approach.

    Communicated by N. Bellomo, F. Brezzi and M. Pulvirenti

    AMSC: 34F05, 35B40, 90C26

    References

    • 1. D. Acemoglu and A. Ozdaglar, Opinion dynamics and learning in social networks, Dynam. Games Appl. 1 (2011) 3–49. Crossref, Web of ScienceGoogle Scholar
    • 2. G. Ajmone Marsan, N. Bellomo and L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci. 26 (2016) 1051–1093. Link, Web of ScienceGoogle Scholar
    • 3. G. Albi, M. Herty and L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus, Commun. Math. Sci. 13 (2015) 1407–1429. Crossref, Web of ScienceGoogle Scholar
    • 4. G. Aletti, G. Naldi and G. Toscani, First-order continuous models of opinion formation, SIAM J. Appl. Math. 67 (2007) 837–853. Crossref, Web of ScienceGoogle Scholar
    • 5. O. Askari-Sichani and M. Jalili, Large-scale global optimization through consensus of opinions over complex networks, Complex Adapt. Syst. Model. 1 (2013) 11. CrossrefGoogle Scholar
    • 6. N. Bellomo and F. Brezzi, Mathematics, complexity and multiscale features of large systems of self-propelled particles, Math. Models Methods Appl. Sci. 26 (2016) 207–214. Link, Web of ScienceGoogle Scholar
    • 7. N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev. 53 (2011) 409–463. Crossref, Web of ScienceGoogle Scholar
    • 8. N. Bellomo and L. Gibelli, Behavioral crowds: Modeling and Monte Carlo simulations toward validation, Comput. Fluids 141 (2016) 13–21. Crossref, Web of ScienceGoogle Scholar
    • 9. N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint, Math. Models Methods Appl. Sci. 22 (2012) 1230004. Link, Web of ScienceGoogle Scholar
    • 10. F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci. 21 (2011) 2179–2210. Link, Web of ScienceGoogle Scholar
    • 11. L. Boudin and F. Salvarani, A kinetic approach to the study of opinion formation, ESAIM: Math. Model. Numer. Anal. 43 (2009) 507–522. Crossref, Web of ScienceGoogle Scholar
    • 12. D. Burini, S. De Lillo and L. Gibelli, Collective learning modeling based on the kinetic theory of active particles, Phys. Life Rev. 16 (2016) 123–139. Crossref, Web of ScienceGoogle Scholar
    • 13. J. A. Carrillo, Y.-P. Choi, C. Totzeck and O. Tse, An analytical framework for a consensus-based global optimization method, preprint (2016), arXiv:1602.00220. Google Scholar
    • 14. J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker–Smale model, SIAM J. Math. Anal. 42 (2010) 218–236. Crossref, Web of ScienceGoogle Scholar
    • 15. V. Cerny, A thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm, J. Optim. Theory Appl. 45 (1985) 41–51. Crossref, Web of ScienceGoogle Scholar
    • 16. S. Chatterjee and E. Seneta, Towards consensus: Some convergence theorems on repeated averaging, J. Appl. Probab. 14 (1977) 89–97. Crossref, Web of ScienceGoogle Scholar
    • 17. B. Cockburn, Discontinuous Galerkin methods, ZAMM Z. Angew. Math. Mech. 83 (2003) 731–754. Crossref, Web of ScienceGoogle Scholar
    • 18. F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control 52 (2007) 852–862. Crossref, Web of ScienceGoogle Scholar
    • 19. F. Cucker and S. Smale, On the mathematics of emergence, Japan J. Math. 2 (2007) 197–227. Crossref, Web of ScienceGoogle Scholar
    • 20. M. H. DeGroot, Reaching a consensus, J. Amer. Statist. Assoc. 69 (1974) 118–121. Crossref, Web of ScienceGoogle Scholar
    • 21. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Vol. 38 (Springer Science and Business Media, 2009). Google Scholar
    • 22. R. L. Dobrushin, Ya. G. Sinai and Yu. M. Sukhov, Dynamical systems of statistical mechanics, in Dynamical Systems II (Springer, 1989), pp. 208–254. CrossrefGoogle Scholar
    • 23. M. Dolfin and M. Lachowicz, Modeling opinion dynamics: How the network enhances consensus, Netw. Heterog. Media 10 (2015) 421–441. Crossref, Web of ScienceGoogle Scholar
    • 24. R. C. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in Proc. Sixth Int. Symp. Micro Machine and Human Science, Vol. 1 (IEEE, 1995), pp. 39–43. Google Scholar
    • 25. L. Festinger, A Theory of Cognitive Dissonance, Vol. 2 (Stanford Univ. Press, 1962). Google Scholar
    • 26. J. R. P. French, Jr., A formal theory of social power, Psychol. Rev. 63 (1956) 181. Crossref, Web of ScienceGoogle Scholar
    • 27. S. Galam, Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena (Springer Science and Business Media, 2012). CrossrefGoogle Scholar
    • 28. S. Galam and S. Moscovici, Towards a theory of collective phenomena: Consensus and attitude changes in groups, European J. Social Psychol. 21 (1991) 49–74. Crossref, Web of ScienceGoogle Scholar
    • 29. S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models 1 (2008) 415–435. Crossref, Web of ScienceGoogle Scholar
    • 30. R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation, J. Artif. Soc. Social Simulat. 5 (2002) 1–33. Web of ScienceGoogle Scholar
    • 31. D. Helbing, Quantitative Sociodynamics: Stochastic Methods and Models of Social Interaction Processes (Springer Science and Business Media, 2010). CrossrefGoogle Scholar
    • 32. D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev. 43 (2001) 525–546. Crossref, Web of ScienceGoogle Scholar
    • 33. M. Jamil and X.-S. Yang, A literature survey of benchmark functions for global optimisation problems, Int. J. Math. Model. Numer. Optim. 4 (2013) 150–194. CrossrefGoogle Scholar
    • 34. P. Jia, A. MirTabatabaei, N. E. Friedkin and F. Bullo, Opinion dynamics and the evolution of social power in influence networks, SIAM Rev. 57 (2015) 367–397. Crossref, Web of ScienceGoogle Scholar
    • 35. D. Karaboga, B. Gorkemli, C. Ozturk and N. Karaboga, A comprehensive survey: Artificial bee colony (ABC) algorithm and applications, Artif. Intell. Rev. 42 (2014) 21–57. Crossref, Web of ScienceGoogle Scholar
    • 36. J. Kennedy, Particle swarm optimization, in Encyclopedia of Machine Learning (Springer, 2010), pp. 760–766. Google Scholar
    • 37. S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671–680. Crossref, Web of ScienceGoogle Scholar
    • 38. D. Knopoff, On a mathematical theory of complex systems on networks with application to opinion formation, Math. Models Methods Appl. Sci. 24 (2014) 405–426. Link, Web of ScienceGoogle Scholar
    • 39. U. Krause, A discrete nonlinear and non-autonomous model of consensus formation, in Communications in Difference Equations, Proc. of the Fourth Int. Conf. on Difference Equations, eds. S. Elaydi, G. Ladas, J. Popenda and J. Rakowski (CRC Press, 2000), pp. 227–236. Google Scholar
    • 40. D. V. Kulkarni, D. V. Rovas and D. A. Tortorelli, A discontinuous Galerkin formulation for solution of parabolic equations on nonconforming meshes, in Domain Decomposition Methods in Science and Engineering XVI (Springer, 2007), pp. 651–658. Google Scholar
    • 41. L. Marco and S. Fabio, Global Optimization. Theory, Algorithms, and Applications (Society for Industrial and Applied Mathematics (SIAM), 2013). Google Scholar
    • 42. M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simulat. 8 (1998) 3–30. CrossrefGoogle Scholar
    • 43. B. C. Mohan and R. Baskaran, A survey: Ant colony optimization-based recent research and implementation on several engineering domain, Expert Syst. Appl. 39 (2012) 4618–4627. Crossref, Web of ScienceGoogle Scholar
    • 44. G. Naldi, L. Pareschi and G. Toscani, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (Springer Science and Business Media, 2010). CrossrefGoogle Scholar
    • 45. C. E. Osgood and P. H. Tannenbaum, The principle of congruity in the prediction of attitude change, Psychol. Rev. 62 (1955) 42. Crossref, Web of ScienceGoogle Scholar
    • 46. L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods (Oxford Univ. Press, 2013). Google Scholar
    • 47. K. E. Parsopoulos and M. N. Vrahatis, Recent approaches to global optimization problems through particle swarm optimization, Nat. Comput. 1 (2002) 235–306. CrossrefGoogle Scholar
    • 48. R. Poli, J. Kennedy and T. Blackwell, Particle swarm optimization, Swarm Intell. 1 (2007) 33–57. CrossrefGoogle Scholar
    • 49. M. Sebastien and T. Eitan, Heterophilious dynamics enhances consensus, SIAM Rev. 56 (2014) 577–621. Crossref, Web of ScienceGoogle Scholar
    • 50. G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968) 506–517. Crossref, Web of ScienceGoogle Scholar
    • 51. A.-S. Sznitman, Topics in propagation of chaos, in Ecole d’Et de Probabilits de Saint-Flour XIX 1989, ed. P.-L. Hennequin, Lecture Notes in Mathematics, Vol. 1464, (Springer, 1991), pp. 165–251. CrossrefGoogle Scholar
    • 52. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995) 1226. Crossref, Web of ScienceGoogle Scholar
    • 53. C. Villani, Topics in Optimal Transportation (Amer. Math. Soc., 2003). CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!