World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Regularity of powers of cover ideals of bipartite graphs

    https://doi.org/10.1142/S0218196723500169Cited by:1 (Source: Crossref)

    Let G=(V,E) be a bipartite graph over the vertex set V={1,,r} and let J=J(G) be the cover ideal of G in the polynomial ring R=K[x1,,xr]. It is known that there are integers b and t0 such that regJt=d(J)t+b is a linear function in t for all tt0. In this paper, we give effective bounds for b and t0.

    Communicated by J. McCullough

    AMSC: 13A15, 13C15, 13D45, 05C90, 05E40, 05E45

    References

    • 1. A. Alilooee, S. Beyarslan and S. Selvaraja, Regularity of powers of unicyclic graphs, Rocky Mountain J. Math. 49(3) (2019) 699–728. Crossref, Web of ScienceGoogle Scholar
    • 2. A. Banerjee, The regularity of powers of edge ideals, J. Algebra Comb. 41(2) (2015) 303–321. Crossref, Web of ScienceGoogle Scholar
    • 3. A. Banerjee, S. K. Beyarslan and T. H. Há, Regularity of powers of edge ideals: From local properties to global bounds, Algebraic Combin. 3(4) (2020) 839–854. CrossrefGoogle Scholar
    • 4. C. Berge, Hypergraphs: Combinatorics of Finite Sets (North-Holland, New York, 1989). Google Scholar
    • 5. D. Berlekamp, Regularity defect stabilization of powers of an ideal, Math. Res. Lett. 19(1) (2012) 109–119. Crossref, Web of ScienceGoogle Scholar
    • 6. S. Beyarslan, H. T. Há and T. N. Trung, Regularity of powers of forests and cycles, J. Algebraic Combin. 42(4) (2015) 1077–1095. Crossref, Web of ScienceGoogle Scholar
    • 7. M. Chardin, Powers of ideals and the cohomology of stalks and fibers of morphisms, Algebra Number Theory 7(1) (2013) 1–18. Crossref, Web of ScienceGoogle Scholar
    • 8. J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, Vol. 244 (Springer, New York, 2008). CrossrefGoogle Scholar
    • 9. D. Cutkosky, J. Herzog and N. V. Trung, Asymptotic behavior of the Castelnuovo-Mumford regularity, Compositio Math. 118 (1999) 243–261. Crossref, Web of ScienceGoogle Scholar
    • 10. D. Eisenbud and J. Harris, Powers of ideals and fibers of morphisms, Math. Res. Lett. 17(2) (2010) 267–273. Crossref, Web of ScienceGoogle Scholar
    • 11. D. Eisenbud and B. Ulrich, Notes on regularity stabilization, Proc. Amer. Math. Soc. 140(4) (2012) 1221–1232. Crossref, Web of ScienceGoogle Scholar
    • 12. S. Fakhari, Regularity of symbolic powers of cover ideals of graphs, Collectanea Math. 70 (2019) 187–195. Crossref, Web of ScienceGoogle Scholar
    • 13. C. Ferr‘o, M. Murgia and O. Olteanu, Powers of edge ideals, Matematiche 67(1) (2012) 129–144. Google Scholar
    • 14. I. Gitler, E. Reyes and R. H. Villarreal, Blowup algebras of ideals of vertex covers of bipartite graphs, Contemp. Math. 376 (2005) 273–279. CrossrefGoogle Scholar
    • 15. H. T. Hà, Asymptotic linearity of regularity and a-invariant of powers of ideals, Math. Res. Lett. 18(1) (2011) 1–9. Crossref, Web of ScienceGoogle Scholar
    • 16. H. T. Há, N. V. Trung and T. N. Trung, Depth and regularity of powers of sums of ideals, Math. Z. 282(3–4) (2016) 819–838. Crossref, Web of ScienceGoogle Scholar
    • 17. N. T. Hang and T. N. Trung, Regularity of powers of cover ideals of unimodular hypergraphs, J. Algebra 513 (2018) 159–176. Crossref, Web of ScienceGoogle Scholar
    • 18. N. T. Hang and T. N. Trung, The behavior of depth functions of powers of cover ideals of bipartite graphs, Ark. Math. 55(1) (2017) 89–104. Crossref, Web of ScienceGoogle Scholar
    • 19. J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, Vol. 260 (Springer, 2010). Google Scholar
    • 20. J. Herzog, T. Hibi and X. Zheng, Monomial ideals whose powers have a linear resolution, Math. Scand. 95(1) (2004) 23–32. Crossref, Web of ScienceGoogle Scholar
    • 21. T. T. Hien and T. N. Trung, Regularity of symbolic powers of square-free monomial ideal, arXiv.2108.06750v3. Google Scholar
    • 22. L. T. Hoa, Maximal generating degrees of powers of homogeneous ideals, Acta Math. Vietnamica 47 (2022) 19–37. Crossref, Web of ScienceGoogle Scholar
    • 23. L. T. Hoa, K. Kimura, N. Terai and T. N. Trung, Stability of depths of symbolic powers of Stanley–Reisner ideals, J. Algebra 473 (2017) 307–323. Crossref, Web of ScienceGoogle Scholar
    • 24. L. T. Hoa and T. N. Trung, Partial Castelnuovo–Mumford regularities of sums and intersections of powers of monomial ideals, Math. Proc. Cambridge Philos Soc. 149 (2010) 1–18. Crossref, Web of ScienceGoogle Scholar
    • 25. M. Hochster, Cohen–Macaulay rings, combinatorics, and simplicial complexes, in Ring Theory II, eds. B. R. Mc-Donald and R. A. Morris, Lecture Notes in Pure and Applied Mathematics, Vol. 26 (M. Dekker, 1977), pp. 171–223. Google Scholar
    • 26. A. V. Jayanthan, N. Narayanan and S. Selvaraja, Regularity of Powers of Bipartite Graphs, J. Algebraic Combin. 47(1) (2018) 17–38. Crossref, Web of ScienceGoogle Scholar
    • 27. A. Kumar and R. Kumar (2022), On the powers of vertex cover ideals, J. Pure Appl. Algebra 226(1) (2022) 106808. Crossref, Web of ScienceGoogle Scholar
    • 28. V. Kodiyalam, Asymptotic behaviour of Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc. 128 (2000) 407–411. Crossref, Web of ScienceGoogle Scholar
    • 29. N. C. Minh and N. V. Trung, Cohen–Macaulayness of powers of two-dimensional squarefree monomial ideals, J. Algebra 322 (2009) 4219–4227. Crossref, Web of ScienceGoogle Scholar
    • 30. E. Miller and B. Sturmfels, Combinatorial Commutative Algebra (Springer, 2005). Google Scholar
    • 31. A. Schrijver, Theory of Linear and Integer Programming (John Wiley & Sons, 1998). Google Scholar
    • 32. Y. Takayama, Combinatorial characterizations of generalized Cohen–Macaulay monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie 48 (2005) 327–344. Google Scholar
    • 33. N. V. Trung and H. Wang, On the asymptotic behavior of Castelnuovo–Mumford regularity, J. Pure Appl. Algebra 201(1–3) (2005) 42–48. Crossref, Web of ScienceGoogle Scholar