World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Similar Master Stability Functions for Different Coupling Schemes in Basic Chaotic Systems

    https://doi.org/10.1142/S0218127423501225Cited by:2 (Source: Crossref)

    Synchronization is a prominent phenomenon in coupled chaotic systems. The master stability function (MSF) is an approach that offers the prerequisites for the stability of complete synchronization, which is dependent on the coupling configuration. In this paper, some basic chaotic systems with the general form of the Sprott-A, Sprott-B, Sprott-D, Sprott-F, Sprott-G, Sprott-O, and Jerk systems are considered. For each system, their parametric form is designed, and constraints required to have similar MSFs in different coupling schemes are determined. Then, the parameters of the designed chaotic systems are found through an exhaustive computer search seeking chaotic solutions. The simplest cases found in this way are introduced, and similar synchronization patterns are confirmed numerically.

    References

    • Amritkar, R. & Rangarajan, G. [2009] “ Stability of multicluster synchronization,” Int. J. Bifurcation and Chaos 19, 4263–4271. Link, Web of ScienceGoogle Scholar
    • Antonik, P., Gulina, M., Pauwels, J. & Massar, S. [2018] “ Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography,” Phys. Rev. E 98, 012215. Crossref, Web of ScienceGoogle Scholar
    • Belykh, I., Hasler, M., Lauret, M. & Nijmeijer, H. [2005] “ Synchronization and graph topology,” Int. J. Bifurcation and Chaos 15, 3423–3433. Link, Web of ScienceGoogle Scholar
    • Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. & Zhou, C. [2002] “ The synchronization of chaotic systems,” Phys. Rep. 366, 1–101. Crossref, Web of ScienceGoogle Scholar
    • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. [2006] “ Complex networks: Structure and dynamics,” Phys. Rep. 424, 175–308. Crossref, Web of ScienceGoogle Scholar
    • Chen, X., Huang, T., Cao, J., Park, J. H. & Qiu, J. [2019] “ Finite-time multi-switching sliding mode synchronisation for multiple uncertain complex chaotic systems with network transmission mode,” IET Contr. Th. Appl. 13, 1246–1257. Crossref, Web of ScienceGoogle Scholar
    • Couzin, I. D. [2018] “ Synchronization: The key to effective communication in animal collectives,” Trend. Cognit. Sci. 22, 844–846. Crossref, Web of ScienceGoogle Scholar
    • Dahms, T., Lehnert, J. & Schöll, E. [2012] “ Cluster and group synchronization in delay-coupled networks,” Phys. Rev. E 86, 016202. Crossref, Web of ScienceGoogle Scholar
    • Faghani, Z., Wang, Z., Parastesh, F., Jafari, S. & Perc, M. [2020] “ Is there a relation between synchronization stability and bifurcation type?,” Int. J. Bifurcation and Chaos 30, 2050123-1–8. Link, Web of ScienceGoogle Scholar
    • Franović, I., Todorović, K., Vasović, N. & Burić, N. [2012] “ Cluster synchronization of spiking induced by noise and interaction delays in homogenous neuronal ensembles,” Chaos 22, 033147. Crossref, Web of ScienceGoogle Scholar
    • Franović, I., Todorović, K., Vasović, N. & Burić, N. [2014] “ Stability, coherent spiking and synchronization in noisy excitable systems with coupling and internal delays,” Commun. Nonlin. Sci. Numer. Simul. 19, 3202–3219. Crossref, Web of ScienceGoogle Scholar
    • Frolov, N. & Hramov, A. [2021] “ Extreme synchronization events in a Kuramoto model: The interplay between resource constraints and explosive transitions,” Chaos 31, 063103. Crossref, Web of ScienceGoogle Scholar
    • Li, Z. & Chen, G. [2006] “ Global synchronization and asymptotic stability of complex dynamical networks,” IEEE Trans. Circuit. Syst.-II 53, 28–33. CrossrefGoogle Scholar
    • Lü, J., Yu, X. & Chen, G. [2004] “ Chaos synchronization of general complex dynamical networks,” Physica A 334, 281–302. Crossref, Web of ScienceGoogle Scholar
    • Moskalenko, O., Phrolov, N., Koronovskii, A. & Hramov, A. [2013] “ Synchronization in the network of chaotic microwave oscillators,” Euro. Phys. J. Spec. Top. 222, 2571–2582. Crossref, Web of ScienceGoogle Scholar
    • Panahi, S., Nazarimehr, F., Jafari, S., Sprott, J. C., Perc, M. & Repnik, R. [2021] “ Optimal synchronization of circulant and non-circulant oscillators,” Appl. Math. Comput. 394, 125830. Crossref, Web of ScienceGoogle Scholar
    • Parastesh, F., Mehrabbeik, M., Rajagopal, K., Jafari, S. & Perc, M. [2022] “ Synchronization in Hindmarsh–Rose neurons subject to higher-order interactions,” Chaos 32, 013125. Crossref, Web of ScienceGoogle Scholar
    • Pecora, L. M. & Carroll, T. L. [1990] “ Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821. Crossref, Web of ScienceGoogle Scholar
    • Pecora, L. M. & Carroll, T. L. [1998] “ Master stability functions for synchronized coupled systems,” Phys. Rev. Lett. 80, 2109. Crossref, Web of ScienceGoogle Scholar
    • Pecora, L. M. & Carroll, T. L. [2015] “ Synchronization of chaotic systems,” Chaos 25, 097611. Crossref, Web of ScienceGoogle Scholar
    • Pikovsky, A., Rosenblum, M. & Kurths, J. [2002] Synchronization: A Universal Concept in Nonlinear Science (American Association of Physics Teachers). Google Scholar
    • Rafikov, M. & Balthazar, J. M. [2008] “ On control and synchronization in chaotic and hyperchaotic systems via linear feedback control,” Commun. Nonlin. Sci. Numer. Simul. 13, 1246–1255. Crossref, Web of ScienceGoogle Scholar
    • Rakshit, S., Bera, B. K. & Ghosh, D. [2018] “ Synchronization in a temporal multiplex neuronal hypernetwork,” Phys. Rev. E 98, 032305. Crossref, Web of ScienceGoogle Scholar
    • Rakshit, S. & Ghosh, D. [2020] “ Generalized synchronization on the onset of auxiliary system approach,” Chaos 30, 111102. Crossref, Web of ScienceGoogle Scholar
    • Rosenblum, M. G., Pikovsky, A. S. & Kurths, J. [1996] “ Phase synchronization of chaotic oscillators,” Phys. Rev. Lett. 76, 1804. Crossref, Web of ScienceGoogle Scholar
    • Rosenblum, M. G., Pikovsky, A. S. & Kurths, J. [1997] “ From phase to lag synchronization in coupled chaotic oscillators,” Phys. Rev. Lett. 78. Crossref, Web of ScienceGoogle Scholar
    • Sawicki, J., Hartmann, L., Bader, R. & Schöll, E. [2022] “ Modelling the perception of music in brain network dynamics,” Front. Netw. Physiol. 2, 910920. CrossrefGoogle Scholar
    • Sprott, J. C. [1994] “ Some simple chaotic flows,” Phys. Rev. E 50, R647. Crossref, Web of ScienceGoogle Scholar
    • Tang, Y., Li, Q., Dong, W., Hu, M. & Zeng, R. [2021] “ Optical chaotic communication using correlation demodulation between two synchronized chaos lasers,” Opt. Commun. 498, 127232. Crossref, Web of ScienceGoogle Scholar
    • Wang, Q., Perc, M., Duan, Z. & Chen, G. [2009] “ Synchronization transitions on scale-free neuronal networks due to finite information transmission delays,” Phys. Rev. E 80, 026206. Crossref, Web of ScienceGoogle Scholar
    • Wang, Y., Lu, J., Liang, J., Cao, J. & Perc, M. [2018] “ Pinning synchronization of nonlinear coupled Lur’e networks under hybrid impulses,” IEEE Trans. Circuits Syst.-II 66, 432–436. CrossrefGoogle Scholar
    • Zhou, P., Yao, Z., Ma, J. & Zhu, Z. [2021] “ A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus,” Chaos Solit. Fract. 145, 110751. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos