World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Structurally Unstable Synchronization and Border-Collision Bifurcations in the Two-Coupled Izhikevich Neuron Model

    https://doi.org/10.1142/S0218127423300409Cited by:1 (Source: Crossref)

    This study investigates a structurally unstable synchronization phenomenon observed in the two-coupled Izhikevich neuron model. As the result of varying the system parameter in the region of parameter space close to where the unstable synchronization is observed, we find significant changes in the stability of its periodic motion. We derive a discrete-time dynamical system that is equivalent to the original model and reveal that the unstable synchronization in the continuous-time dynamical system is equivalent to border-collision bifurcations in the corresponding discrete-time system. Furthermore, we propose an objective function that can be used to obtain the parameter set at which the border-collision bifurcation occurs. The proposed objective function is numerically differentiable and can be solved using Newton’s method. We numerically generate a bifurcation diagram in the parameter plane, including the border-collision bifurcation sets. In the diagram, the border-collision bifurcation sets show a novel bifurcation structure that resembles the “strike-slip fault” observed in geology. This structure implies that, before and after the border-collision bifurcation occurs, the stability of the periodic point discontinuously changes in some cases but maintains in other cases. In addition, we demonstrate that a border-collision bifurcation set successively branches at distinct points. This behavior results in a tree-like structure being observed in the border-collision bifurcation diagram; we refer to this structure as a border-collision bifurcation tree. We observe that a periodic point disappears at the border-collision bifurcation in the discrete-time dynamical system and is simultaneously replaced by another periodic point; this phenomenon corresponds to a change in the firing order in the continuous-time dynamical system.

    References

    • Banerjee, S. & Grebogi, C. [1999] “ Border collision bifurcations in two-dimensional piecewise smooth maps,” Phys. Rev. E 59, 4052. Crossref, Web of ScienceGoogle Scholar
    • Chossat, P. & Lauterbach, R. [2000] Methods in Equivariant Bifurcations and Dynamical Systems, Vol. 15 (World Scientific, Singapore). LinkGoogle Scholar
    • Elkaranshawy, H. A., Aboukelila, N. M. & Elabsy, H. M. [2021] “ Suppressing the spiking of a synchronized array of Izhikevich neurons,” Nonlin. Dyn. 104, 2653–2670. Crossref, Web of ScienceGoogle Scholar
    • Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M. & Moss, F. [2000] “ Homoclinic bifurcation in a Hodgkin–Huxley model of thermally sensitive neurons,” Chaos 10, 231–239. Crossref, Web of ScienceGoogle Scholar
    • Heidarpur, M., Ahmadi, A., Ahmadi, M. & Azghadi, M. R. [2019] “CORDIC-SNN: On-FPGA STDP learning with Izhikevich neurons,” IEEE Trans. Circuits Syst.-I: Regular Papers 66, 2651–2661. Google Scholar
    • Hodgkin, A. L. & Huxley, A. F. [1952] “ A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol. 117, 500. Crossref, Web of ScienceGoogle Scholar
    • Ito, D., Ueta, T. & Aihara, K. [2010] “ Bifurcation analysis of two coupled Izhikevich oscillators,” IEICE Proc. Series 44, 627–630. Google Scholar
    • Izhikevich, E. M. [2003] “ Simple model of spiking neurons,” IEEE Trans. Neur. Netw. 14, 1569–1572. Crossref, Web of ScienceGoogle Scholar
    • Kang, S. M., Choi, D., Eshraghian, J. K., Zhou, P., Kim, J., Kong, B.-S., Zhu, X., Demirkol, A. S., Ascoli, A., Tetzlaff, R. et al., [2021] “How to build a memristive integrate-and-fire model for spiking neuronal signal generation,” IEEE Trans. Circuits Syst.-I: Regular Papers 68, 4837–4850. Google Scholar
    • Kousaka, T., Ueta, T. & Kawakami, H. [1999] “ Bifurcation of switched nonlinear dynamical systems,” IEEE Trans. Circuits Syst.-II: Anal. Digit. Sign. Process. 46, 878–885. CrossrefGoogle Scholar
    • Kousaka, T., Ueta, T., Tahara, S., Kawakami, H. & Abe, M. [2002] “ Implementation and analysis of a simple circuit causing border-collision bifurcation,” IEEJ Trans. Electron. Inform. Syst. 122, 1908–1916. Google Scholar
    • Lapicque, L. [1907] “ Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization,” Journal de Physiologie et de Pathologie Générale 9, 620–635. Google Scholar
    • Ma, Y., Kawakami, H. & Tse, C. K. [2004] “ Analysis of bifurcation in switched dynamical systems with periodically moving borders: Application to power converters,” 2004 IEEE Int. Symp. Circuits and Systems (ISCAS) (IEEE), pp. IV–701. Google Scholar
    • Miino, Y., Ito, D. & Ueta, T. [2015] “ A computation method for non-autonomous systems with discontinuous characteristics,” Chaos Solit. Fract. 77, 277–285. Crossref, Web of ScienceGoogle Scholar
    • Miino, Y. & Ueta, T. [2016] “Synchronized firing phenomena and bifurcation in coupled Izhikevich neuron model,” IEICE Technical Report; IEICE Tech. Rep. 116, 51–56. Google Scholar
    • Nusse, H. E., Ott, E. & Yorke, J. A. [1994] “ Border-collision bifurcations: An explanation for observed bifurcation phenomena,” Phys. Rev. E 49, 1073. Crossref, Web of ScienceGoogle Scholar
    • Rozenberg, M., Schneegans, O. & Stoliar, P. [2019] “ An ultra-compact leaky-integrate-and-fire model for building spiking neural networks,” Scient. Rep. 9, 11123. Crossref, Web of ScienceGoogle Scholar
    • Sapounaki, M. & Kakarountas, A. [2019] “ A high-performance neuron for artificial neural network based on Izhikevich model,” 2019 29th Int. Symp. Power and Timing Modeling, Optimization and Simulation (PATMOS) (IEEE), pp. 29–34. CrossrefGoogle Scholar
    • Shafiei, M., Parastesh, F., Jalili, M., Jafari, S., Perc, M. & Slavinec, M. [2019] “ Effects of partial time delays on synchronization patterns in Izhikevich neuronal networks,” The Europ. Phys. J. B 92, 1–7. Crossref, Web of ScienceGoogle Scholar
    • Simpson, D. J. [2016] “ Border-collision bifurcations in rn,” SIAM Rev. 58, 177–226. Crossref, Web of ScienceGoogle Scholar
    • Tamura, A., Ueta, T. & Tsuji, S. [2009] “ Bifurcation analysis of Izhikevich neuron model,” Dyn. Contin. Discr. Impul. Syst. Series A: Math. Anal. 16, 759–775. Google Scholar
    • Tolba, M. F., Elsafty, A. H., Armanyos, M., Said, L. A., Madian, A. H. & Radwan, A. G. [2019] “ Synchronization and FPGA realization of fractional-order Izhikevich neuron model,” Microelectron. J. 89, 56–69. Crossref, Web of ScienceGoogle Scholar
    • Vazquez, R. [2010] “ Izhikevich neuron model and its application in pattern recognition,” Australian J. Intell. Inform. Process. Syst. 11, 35–40. Google Scholar
    • Vivekanandhan, G., Hamarash, I. I., Ali Ali, A. M., He, S. & Sun, K. [2022] “ Firing patterns of Izhikevich neuron model under electric field and its synchronization patterns,” The European Phys. J. Special Topics, pp. 1–7. Web of ScienceGoogle Scholar
    • Wang, G., Yang, L., Zhan, X., Li, A. & Jia, Y. [2022] “ Chaotic resonance in Izhikevich neural network motifs under electromagnetic induction,” Nonlin. Dyn. 107, 3945–3962. Crossref, Web of ScienceGoogle Scholar
    • Yamashita, Y. & Torikai, H. [2012] “ Bifurcation analysis of inhibitory responses of a PWC spiking neuron model,” Nonlin. Th. Its Appl. IEICE 3, 557–572. Google Scholar