World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Complex Dynamics and Sliding Bifurcations of the Filippov Lorenz–Chen System

    https://doi.org/10.1142/S0218127422501826Cited by:4 (Source: Crossref)

    In this paper, we propose a Filippov switching model which is composed of the Lorenz and Chen systems. By employing the qualitative analysis techniques of nonsmooth dynamical systems, we show that the new Filippov system not only inherits the properties of the Lorenz and Chen systems but also presents new dynamics including new chaotic attractors such as four-wing butterfly attractor, Lorenz attractor with sliding segments, etc. In particular, we find that different new attractors can coexist such as the coexistence of two-point attractors and chaotic attractor, the coexistence of two-point attractors and quasi-periodic solution, the coexistence of transient transition chaos and quasi-periodic solution. Furthermore, nonsmooth bifurcations and numerical analyses reveal that the proposed Filippov system has a series of new sliding bifurcations including a symmetric pair of sliding mode bifurcations, a symmetric pair of sliding Hopf bifurcations, and a symmetric pair of Hopf-like boundary equilibrium bifurcations.

    References

    • Barboza, R. [2018] “ On Lorenz and Chen Systems,” Int. J. Bifurcation and Chaos 28, 1850018-1–8. Link, Web of ScienceGoogle Scholar
    • Belykh, V. N., Barabash, N. V. & Belykh, I. V. [2019] “ Lorenz-type attractor in a piecewise-smooth system: Rigorous results,” Chaos 29, 103108. Crossref, Web of ScienceGoogle Scholar
    • Belykh, V. N., Barabash, N. V. & Belykh, I. V. [2021] “ Sliding homoclinic bifurcations in a Lorenz-type system: Analytic proofs,” Chaos 31, 043117. Crossref, Web of ScienceGoogle Scholar
    • Bernardo, M. D., Pagano, D. J. & Ponce, E. [2008a] “ Nonhyperbolic boundary equilibrium bifurcations in planar Filippov systems: A case study approach,” Int. J. Bifurcation and Chaos 18, 1377–1392. Link, Web of ScienceGoogle Scholar
    • Bernardo, M. D., Budd, C. J., Champneys, A. R. & Kowalczyk, P. [2008b] Piecewise-Smooth Dynamical Systems: Theory and Applications (Springer-Verlag, NY). Google Scholar
    • Broucke, M. E. & Pugh, C. C. [2001] “ Structural stability of piecewise smooth systems,” Comput. Appl. Math. 20, 51–89. Google Scholar
    • Carvalho, T., Crsitiano, R., Goncalves, L. F. & Tonon, D. J. [2020] “ Global analysis of the dynamics of a mathematical model to intermittent HIV treatment,” Nonlin. Dyn. 101, 719–739. Crossref, Web of ScienceGoogle Scholar
    • Čelikovský, S. & Vanĕc̆ek, A. [1994] “ Bilinear systems and chaos,” Kybernetika 30, 403–423. Web of ScienceGoogle Scholar
    • Chen, G. R. & Ueta, T. [1999] “ Yet another chaotic attractor,” Int. J. Bifurcation and Chaos 9, 1465–1466. Link, Web of ScienceGoogle Scholar
    • Cristiano, R., Carvalho, T., Tonon, D. J. & Pagano, D. J. [2017] “ Hopf and Homoclinic bifurcations on the sliding vector field of switching systems in R3: A case study in power electronics,” Physica D 347, 12–20. Crossref, Web of ScienceGoogle Scholar
    • Cristiano, R. & Pagano, D. J. [2019] “ Two-parameter boundary equilibrium bifurcations in 3D-Filippov systems,” J. Nonlin. Sci. 29, 2845–2875. Crossref, Web of ScienceGoogle Scholar
    • Cristiano, R., Tonon, D. J. & Velter, M. Q. [2021] “ Hopf-like bifurcations and asymptotic stability in a Class of 3D piecewise linear systems with applications,” J. Nonlin. Sci. 31, 1–37. Crossref, Web of ScienceGoogle Scholar
    • Filippov, A. F. [1988] Differential Equations with Discontinuous Righthand Sides (Kluwer Academic Publishers, Dordrecht, The Netherlands). CrossrefGoogle Scholar
    • Kuznetsov, Y. A., Rinaldi, S. & Gragnani, A. [2003] “ One-parameter bifurcations in planar Filippov systems,” Int. J. Bifurcation and Chaos 13, 2157–2188. Link, Web of ScienceGoogle Scholar
    • Lorenz, E. N. [1963] “ Deterministic nonperiodic flow,” J. Atmosph. Sci. 20, 130–141. Crossref, Web of ScienceGoogle Scholar
    • Lv, J. H. & Chen, G. R. [2002] “ A new chaotic attractor coined,” Int. J. Bifurcation and Chaos 12, 659–661. Link, Web of ScienceGoogle Scholar
    • Lv, J. H., Chen, G. R. & Zhang, S. C. [2002a] “ Dynamical analysis of a new chaotic attractor,” Int. J. Bifurcation Chaos 12, 1001–1015. Link, Web of ScienceGoogle Scholar
    • Lv, J. H., Chen, G. R. & Zhang, S. C. [2002b] “ The compound structure of a new chaotic attractor,” Chaos Solit. Fract. 14, 669–672. Crossref, Web of ScienceGoogle Scholar
    • Ott, E. [2002] Chaos in Dynamical Systems: References, 2nd edition (Cambridge University, Cambridge). CrossrefGoogle Scholar
    • Pedigo, L. P., Hutchins, S. H. & Higley, L. G. [1986] “ Economic injury levels in theory and practice,” Ann. Rev. Entomol. 31, 341–368. Crossref, Web of ScienceGoogle Scholar
    • Perko, L. [2001] Differential Equations and Dynamical Systems, 3rd edition (Springer-Verlag, NY). CrossrefGoogle Scholar
    • Qin, W. J., Tan, X. W., Tosato, M. & Liu, X. Z. [2019] “ Threshold control strategy for a non-smooth Filippov ecosystem with group defense,” Appl. Math. Comput. 362, 124532. Crossref, Web of ScienceGoogle Scholar
    • Simpson, D. J. W. [2018] “ A compendium of Hopf-like bifurcations in piecewise-smooth dynamical systems,” Phys. Lett. A 382, 2439–2444. Crossref, Web of ScienceGoogle Scholar
    • Simpson, D. J. W. [2019] “ Hopf-like boundary equilibrium bifurcations involving two foci in Filippov systems,” J. Diff. Eqs. 267, 6133–6151. Crossref, Web of ScienceGoogle Scholar
    • Sparrow, C. [1982] The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors (Springer-Verlag, NY). CrossrefGoogle Scholar
    • Stewart, I. [2002] “ The Lorenz attractor exists,” Nature 406, 948–949. Crossref, Web of ScienceGoogle Scholar
    • Tang, S. Y., Liang, J. H., Xiao, Y. N. & Cheke, R. A. [2012] “ Sliding bifurcations of Filippov two stage pest control models with economic thresholds,” SIAM J. Appl. Math. 72, 1061–1080. Crossref, Web of ScienceGoogle Scholar
    • Tang, S. Y., Tang, G. Y. & Qin, W. J. [2014] “ Codimension-1 sliding bifurcations of a Filippov pest growth model with threshold policy,” Int. J. Bifurcation and Chaos 24, 1450122-1–25. Link, Web of ScienceGoogle Scholar
    • Ueta, T. & Chen, G. R. [2000] “ Bifurcation analysis of Chen’s equation,” Int. J. Bifurcation and Chaos 10, 1917–1931. Link, Web of ScienceGoogle Scholar
    • Vanĕc̆ek, A. & Čelikovský, S. [1996] Control Systems: From Linear Analysis to Synthesis of Chaos (Prentice-Hall, London). Google Scholar
    • Varriale, M. C. & Gomes, A. A. [1998] “ A study of a three species food chain,” Ecol. Model. 110, 119–133. Crossref, Web of ScienceGoogle Scholar
    • Wang, A. L., Xiao, Y. N. & Zhu, H. P. [2018] “ Dynamics of a Filippov epidemic model with limited hospital beds,” Math. Biosci. Engin. 15, 739–764. Crossref, Web of ScienceGoogle Scholar
    • Wang, A. L., Xiao, Y. N. & Smith, R. [2019] “ Multiple equilibria in a non-smooth epidemic model with medical-resource constraints,” Bull. Math. Biol. 81, 963–994. Crossref, Web of ScienceGoogle Scholar
    • Zhang, C. & Bi, Q. S. [2015] “ On two-parameter bifurcation analysis of the periodic parameter-switching Lorenz oscillator,” Nonlin. Dyn. 81, 577–583. Crossref, Web of ScienceGoogle Scholar
    • Zwillinger, D. [1992] “Chaos in dynamical systems,” Handbook of Differential Equations, 2nd edition, pp. 26–32. Google Scholar