World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Pseudo-Hopf Bifurcation for a Class of 3D Filippov Linear Systems

    https://doi.org/10.1142/S0218127421500255Cited by:18 (Source: Crossref)

    We consider a nongeneric family of 3D Filippov linear systems with a discontinuity plane that have two parallel tangency lines, such that the region between them is the sliding region. We are interested in finding under what conditions the family has a crossing limit cycle, when the sliding region changes its stability. We call this phenomenon the pseudo-Hopf bifurcation. This class of systems is motivated by piecewise-linear control systems which have not yet been treated in the context of crossing limit cycles.

    References

    • Castillo, J. A., Llibre, J. & Verduzco, F. [2017] “ The pseudo-Hopf bifurcation for planar discontinuous piecewise linear differential systems,” Nonlin. Dyn. 90, 1829–1840. Crossref, Web of ScienceGoogle Scholar
    • Colombo, A., di Bernardo, M., Fossas, E. & Jeffrey, M. R. [2010] “ Teixeira singularities in 3D switched feedback control systems,” Syst. Contr. Lett. 59, 615–622. Crossref, Web of ScienceGoogle Scholar
    • Colombo, A. & Jeffrey, M. R. [2011] “ Nondeterministic chaos, and the two-fold singularity in piecewise smooth flows,” SIAM J. Appl. Dyn. Syst. 10, 423–451. Crossref, Web of ScienceGoogle Scholar
    • Cristiano, R., Pagano, D. J., Freire, E. & Ponce, E. [2018] “ Revisiting the Teixeira singularity bifurcation analysis: Application to the control of power converters,” Int. J. Bifurcation and Chaos 28, 1850106-1–31. Link, Web of ScienceGoogle Scholar
    • Cristiano, R. & Pagano, D. J. [2019] “ Two-parameter boundary equilibrium bifurcations in 3D-Filippov systems,” J. Nonlin. Sci. 29, 2845–2875. Crossref, Web of ScienceGoogle Scholar
    • Cristiano, R., Ponce, E., Pagano, D. J. & Granzotto, M. [2019] “ On the Teixeira singularity bifurcation in a DC-DC power electronic converter,” Nonlin. Dyn. 96, 1243–1266. Crossref, Web of ScienceGoogle Scholar
    • Filippov, A. F. [1988] Differential Equations with Discontinuous Right-hand Sides (Kluwer Academic Publishers, Dordrecht). CrossrefGoogle Scholar
    • Freire, E., Ponce, E. & Torres, F. [2012] “ Canonical discontinuous planar piecewise linear systems,” SIAM J. Appl. Dyn. Syst. 11, 181–211. Crossref, Web of ScienceGoogle Scholar
    • Guardia, M., Seara, T. M. & Teixeira, M. A. [2011] “ Generic bifurcations of low codimension of planar Filippov systems,” J. Diff. Eqs. 250, 1967–2023. Crossref, Web of ScienceGoogle Scholar
    • Han, M. & Zhang, W. [2010] “ On Hopf bifurcation in nonsmooth planar systems,” J. Diff. Eqs. 248, 2399–2416. Crossref, Web of ScienceGoogle Scholar
    • Jeffrey, M. R. & Colombo, A. [2009] “ The two-fold singularity of discontinuous vector fields,” SIAM J. Appl. Dyn. Syst. 8, 624–640. Crossref, Web of ScienceGoogle Scholar
    • Kuznetsov, Y. A., Rinaldi, S. & Gragnani, A. [2003] “ One parameter bifurcations in planar Filippov systems,” Int. J. Bifurcations and Chaos 13, 2157–2188. Link, Web of ScienceGoogle Scholar
    • Llibre, J. & Ponce, E. [2012] “ Three nested limit cycles in discontinuous piecewise linear differential systems,” Dyn. Contin. Discr. Impuls. Syst. Ser. B 19, 325–335. Google Scholar
    • Simpson, D. J. W. [2019] “Twenty Hopf-like bifurcations in piecewise-smooth dynamical systems,” arXiv 2019. Google Scholar
    • Teixeira, M. A. [1990] “ Stability conditions for discontinuous vector fields,” J. Diff. Eqs. 88, 15–29. Crossref, Web of ScienceGoogle Scholar
    • Teixeira, M. A. [1993] “ Generic bifurcation of sliding vector fields,” J. Math. Anal. Appl. 176, 436–457. Crossref, Web of ScienceGoogle Scholar
    • Teixeira, M. A. & Gomide, O. M. L. [2018] “ Generic singularities of 3D piecewise smooth dynamical systems,” Advances in Mathematics and Applications, eds. Lavor, C. & Gomes, F. (Springer, Cham), pp. 373–404. CrossrefGoogle Scholar