A CHAOTIC SYSTEM WITH ONE SADDLE AND TWO STABLE NODE-FOCI
Abstract
This paper reports the finding of a chaotic system with one saddle and two stable node-foci in a simple three-dimensional (3D) autonomous system. The system connects the original Lorenz system and the original Chen system and represents a transition from one to the other. The algebraical form of the chaotic attractor is very similar to the Lorenz-type systems but they are different and, in fact, nonequivalent in topological structures. Of particular interest is the fact that the chaotic system has a chaotic attractor, one saddle and two stable node-foci. To further understand the complex dynamics of the system, some basic properties such as Lyapunov exponents, bifurcations, routes to chaos, periodic windows, possible chaotic and periodic-window parameter regions, and the compound structure of the system are analyzed and demonstrated with careful numerical simulations.
References
-
S. Barnett , Polynomials and Linear Control Systems ( Marcel Dekker , NY , 1983 ) . Google Scholar - Kybernetika 30, 403 (1994). Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 12, 1789 (2002), DOI: 10.1142/S0218127402005467. Link, Web of Science, Google Scholar
-
S. Čelikovský and G. Chen , Hyperbolic-type generalized Lorenz system and its canonical form , Proc. 15th Triennial World Congress of IFAC ( 2002 ) . Google Scholar - Chaos Solit. Fract. 26, 1271 (2005), DOI: 10.1016/j.chaos.2005.02.040. Crossref, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 9, 1465 (1999), DOI: 10.1142/S0218127499001024. Link, Web of Science, Google Scholar
- Chaos Solit. Fract. 21, 185 (2004), DOI: 10.1016/j.chaos.2003.10.009. Crossref, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 12, 659 (2002), DOI: 10.1142/S0218127402004620. Link, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 12, 2917 (2002), DOI: 10.1142/S021812740200631X. Link, Web of Science, Google Scholar
- Bull. Amer. Math. Soc. (New Series) 32, 66 (1995), DOI: 10.1090/S0273-0979-1995-00558-6. Crossref, Web of Science, Google Scholar
- Trudy Moskov. Mat. Obshch. 19, 179 (1968). Google Scholar
-
C. Sparrow , The Lorenz Equations: Bifurcation, Chaos, and Strange Attractor ( Springer-Verlag , NY , 1982 ) . Crossref, Google Scholar -
J. C. Sprott , Chaos and Time-Series Analysis ( Oxford University Press , Oxford , 2003 ) . Crossref, Google Scholar - Nature 406, 948 (2002), DOI: 10.1038/35023206. Crossref, Web of Science, Google Scholar
- C. R. Acad. Paris Ser. I: Math. 328, 1197 (1999). Crossref, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 10, 1917 (2000). Link, Web of Science, Google Scholar
-
A. Vanečěk and S. Čelikovský , Control Systems: From Linear Analysis to Synthesis of Chaos ( Prentice-Hall , London , 1996 ) . Google Scholar - Turbulence Seminar Berkeley 1996/97, eds.
P. Bermard and T. Ratiu (Springer-Verlag, Berlin, 1997) pp. 94–112. Google Scholar , - Int. J. Bifurcation and Chaos 16, 2855 (2006), DOI: 10.1142/S0218127406016501. Link, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 17, 3929 (2007), DOI: 10.1142/S0218127407019792. Link, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 13, 2561 (2003), DOI: 10.1142/S0218127403008089. Link, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 14, 3167 (2004), DOI: 10.1142/S0218127404011296. Link, Web of Science, Google Scholar
- Chaos Solit. Fract. 20, 979 (2004), DOI: 10.1016/j.chaos.2003.10.030. Crossref, Web of Science, Google Scholar
- Chaos Solit. Fract. 19, 863 (2004), DOI: 10.1016/S0960-0779(03)00243-1. Crossref, Web of Science, Google Scholar
- Nonlin. Dyn. 39, 319 (2005), DOI: 10.1007/s11071-005-4195-8. Crossref, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 16, 2459 (2006), DOI: 10.1142/S0218127406016203. Link, Web of Science, Google Scholar