World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

A CHAOTIC SYSTEM WITH ONE SADDLE AND TWO STABLE NODE-FOCI

    https://doi.org/10.1142/S0218127408021063Cited by:169 (Source: Crossref)

    This paper reports the finding of a chaotic system with one saddle and two stable node-foci in a simple three-dimensional (3D) autonomous system. The system connects the original Lorenz system and the original Chen system and represents a transition from one to the other. The algebraical form of the chaotic attractor is very similar to the Lorenz-type systems but they are different and, in fact, nonequivalent in topological structures. Of particular interest is the fact that the chaotic system has a chaotic attractor, one saddle and two stable node-foci. To further understand the complex dynamics of the system, some basic properties such as Lyapunov exponents, bifurcations, routes to chaos, periodic windows, possible chaotic and periodic-window parameter regions, and the compound structure of the system are analyzed and demonstrated with careful numerical simulations.

    References