World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Time Domain and Area Efficient Smart Temperature Sensor Exploiting Channel Length Modulation Coefficient

    https://doi.org/10.1142/S0218126624502384Cited by:1 (Source: Crossref)

    This work suggests an all-digital temperature sensor with a high sampling rate that is based on a time-to-digital converter (TDC). Two on-chip voltage-controlled oscillators (VCOs) are used in the design of the sensor core, which senses temperatures between 40C and 200C. For digital code conversion, the outputs of the VCO are fed into two asynchronous counters. In both low- and high- resolution modes, the error following two-point calibration is observed between 1.08C and +1.06C. The sensor’s ability to function in both high- and low-resolution modes based on conversion time is an important feature. At a sampling frequency of 0.19MHz, the maximum resolution achieved is 0.18C. Additionally, the sensor has control logic built in to turn off the sensing as soon as the conversion is complete. At 90-nm process, 1.1V supply voltage and 27C, the proposed sensor occupies 0.044mm2 and consumes 817.5μW.

    This paper was recommended by Regional Editor Giuseppe Ferri.

    References

    • 1. D. Ha, K. Woo, S. Meninger, T. Xanthopoulos, E. Crain and D. Ham, Time-domain CMOS temperature sensors with dual delay-locked loops for microprocessor thermal monitoring, IEEE Trans. Very Large Scale Integr. Syst. 20 (2012) 1590–1601. Crossref, Web of ScienceGoogle Scholar
    • 2. G. C. M. Meijer, Thermal sensors based on transistors, Sens. Actuators 10 (1986) 103–125. Crossref, Web of ScienceGoogle Scholar
    • 3. G. Wang and G. C. M. Meijer, The temperature characteristics of bipolar transistors fabricated in CMOS technology, Sens. Actuators 87 (2000) 81–89. Crossref, Web of ScienceGoogle Scholar
    • 4. H. Kobayashi, H. Aoki, K. Katoh and C. Li, Analog/mixed-signal circuit design in nano CMOS era, IEICE Electron. Express 11 (2014) 20142002. Crossref, Web of ScienceGoogle Scholar
    • 5. B. Yousefzadeh, S. H. Shalmany and K. A. A. Makinwa, A BJT-based temperature-to-digital converter with ±60mK (3σ) inaccuracy from 55C to + 125C in 0.16-μm CMOS, IEEE Journal of Solid-State Circuits 52 (2017) 1044–1052. CrossrefGoogle Scholar
    • 6. E. Bayer and M. Traxler, A high-resolution ( <10ps RMS) 48-channel time-to-digital converter (TDC) implemented in a field programmable gate array (FPGA), IEEE Trans. Nucl. Sci. 58 (2011) 1547–1552. Crossref, Web of ScienceGoogle Scholar
    • 7. J. Torres, A. Aguilar, R. García-Olcina, P. A. Martínez, J. Martos, J. Soret, J. M. Benlloch, P. Conde, A. J. González and F. Sánchez, Time-to-digital converter based on fpga with multiple channel capability, IEEE Trans. Nucl. Sci. 61 (2014) 107–114. Crossref, Web of ScienceGoogle Scholar
    • 8. P. Chen, S. L. Liu and J. Wu, A CMOS pulse-shrinking delay element for time interval measurement, IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 47 (2000) 954–958. CrossrefGoogle Scholar
    • 9. Y. J. Park and F. Yuan, 12.88 MS/s 0.28 pJ/conv. step 8-bit stage-interleaved pulse-shrinking time-to-digital converter in 130-nm CMOS, IEEE Int. Midwest Symp. Circuits and Systems (IEEE, 2015), pp. 1–4. Google Scholar
    • 10. P. Chen, C. C. Chen, C. C. Tsai and W. F. Lu, A time-to-digital converter-based CMOS smart temperature sensor, IEEE J. Solid-State Circuits 40 (2005) 1642–1648. Crossref, Web of ScienceGoogle Scholar
    • 11. P. Chen, M. C. Shie, Z. Y. Zheng, Z. F. Zheng and C. Y. Chu, A fully digital time domain smart temperature sensor realized with 140 FPGA logic elements, IEEE Trans. Circuits Syst.-I: Regul. Pap. 54 (2007) 2661–2668. Crossref, Web of ScienceGoogle Scholar
    • 12. C. C. Chen and H. W. Chen, A low-cost smart temperature sensor using a thermal sensing and pulse shrinking delay line, IEEE Sens. J. 14 (2014) 278–284. CrossrefGoogle Scholar
    • 13. Y. J. An, D. H. Jung, K. Ryu, S. H. Woo and S. O. Jung, An energy efficient all digital time domain-based CMOS temperature sensor for SoC thermal management, IEEE Trans. Very Large-Scale Integr. Syst. 23 (2015) 1508–1517. Crossref, Web of ScienceGoogle Scholar
    • 14. C. C. Chen, C. L. Chen and Y. Lin, All digital time domain CMOS smart temperature sensor with on-chip linearity enhancement, MDPI Sens. 16 (2016) 176. Crossref, Web of ScienceGoogle Scholar
    • 15. Q. Huang, H. Joo, J. Kim, C. Zhan and J. Burm, An energy efficient frequency domain CMOS temperature sensor with switched vernier time-to-digital conversion, IEEE Sens. J. 17 (2017) 3001–3011. Crossref, Web of ScienceGoogle Scholar
    • 16. W. Song, J. Lee, N. Cho and J. Burm, An ultra-low power time-domain temperature sensor with time-domain delta-sigma TDC, IEEE Trans. Circuits Syst. II-Express Briefs 64 (2017) 1117–1121. Google Scholar
    • 17. X. Tang and K. P. Pun, A self-clocked resistive CMOS smart temperature sensor for wireless sensor networks, World Sci. J. Circuits Syst. Comput. 27 (2018) 1850091. Link, Web of ScienceGoogle Scholar
    • 18. R. S. S. M. R. Krishna, A. K. Mal and R. Mahapatra, All MOS noise-shaped time-mode temperature sensor, Elsevier Integr. VLSI J. 65 (2019) 74–80. Crossref, Web of ScienceGoogle Scholar
    • 19. H. Shimada and K. Mizuno, External oscillator-less TDC-based all-digital temperature sensor, Wiley Electron. Commun. Jpn. 139 (2019) 12–18. CrossrefGoogle Scholar
    • 20. T. Someya, A. K. M. Mahfuzul Islam, T. Sakurai and M. Takamiya, An 11-nW CMOS temperature-to-digital converter utilizing sub-threshold current at sub-thermal drain voltage, IEEE J. Solid-State Circuits 54 (2019) 613–622. Crossref, Web of ScienceGoogle Scholar
    • 21. R. S. S. M. R. Krishna, A. K. Mal and R. Mahapatra, CMOS time-mode smart temperature sensor using programmable temperature compensation devices and ΔΣ time-to-digital converter, Springer Circuit Syst. Signal Process. 39 (2020) 1751–1769. Google Scholar
    • 22. S. Pavan, R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters (Wiley, New York, 2017). Google Scholar
    • 23. Z. Cai, Z. Wang, W. Zhang, X. Wang and Z. Wang, A pipeline TDC based CMOS temperature sensor with a 48 fJ ×K2 resolution FoM, MDPI Electron. 10 (2021) 1542. Google Scholar
    • 24. X. Mao, F. Yang, F. Wei, J. Shi, J. Cai and H. Cai, A low temperature coefficient time to digital converter with 1.3ps resolution implemented in 28nm FPGA, MDPI Sens. 22 (2022) 2306. CrossrefGoogle Scholar