World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Fermions with electric dipole moment in curved space–time

    https://doi.org/10.1142/S0217751X24500787Cited by:0 (Source: Crossref)

    This paper explores the relativistic behavior of spin-half particles possessing an Electric Dipole Moment (EDM) in a curved space–time background induced by a spiral dislocation. A thorough review of the mathematical formulation of the Dirac spinor in the framework of quantum field theory sets the foundation for our investigation. By deriving the action that governs the interaction between the spinor field, the background space–time, and an external electric field, we establish a framework to study the dynamics of the system. Solving the resulting wave equation reveals a set of coupled equations for the radial components of the Dirac spinor, which give rise to a modified energy spectrum attributed to the EDM. To validate our findings, we apply them to the geometric phase and thermodynamics.

    References

    You currently do not have access to the full text article.

    Recommend the journal to your library today!