World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
https://doi.org/10.1142/S0129626424500026Cited by:0 (Source: Crossref)

Multidimensional torus networking topology has become widespread recently in the domain of high-performance computers, clusters, and grids, as well as in the domain of networks on chip. Torus represents an ideal communication structure with the shortest distance and multitude of alternative shortest paths between a pair of nodes. We study simple and powerful local packet forwarding (switching) rules that provide packet delivery with quasi-optimal load balancing and do not use tables of addresses (routes). Implementation of these rules in the form of micro-program code within switching nodes increases considerably network performance, security, and QoS. We use infinite Petri nets and reenterable models in the form of colored Petri nets for prototyping the multi-dimensional torus interconnect simulator to study and compare the packet forwarding rules. Then, an ad-hoc simulator of torus interconnect ts is implemented in the C language to provide high performance and the possibility of simulation over prolonged intervals of time. The simulation results acknowledge the advantages of local packet forwarding rules.

Communicated by Andrew Adamatzky

References

  • 1. P. Raj and S. Koteeswaran, Novel Practices and Trends in Grid and Cloud Computing (IGI Global, USA, 2019). CrossrefGoogle Scholar
  • 2. The world’s top-level supercomputer: Supercomputer Fugaku, https://www.fujitsu.com/global/about/innovation/fugaku/. Google Scholar
  • 3. J. Dongarra, Report on the Fujitsu Fugaku System. Tech Report ICL-UT-20-06, University of Tennessee, Knoxville, Oak Ridge National Laboratory, University of Manchester, USA (2020). Google Scholar
  • 4. Y. Ajima, S. Sumimoto and T. Shimizu, TOFU: A 6D mesh/torus interconnect for exascale computers, Computer 42(11) (November 2009) 36–40. Crossref, Web of ScienceGoogle Scholar
  • 5. S. Cheng, W. Zhong, K. E. Isaacs and K. Mueller, Visualizing the topology and data traffic of multi-dimensional torus interconnect networks, IEEE Access 6 (2018) 57191–57204. Crossref, Web of ScienceGoogle Scholar
  • 6. N. E. Jerger, T. Krishna and L. S. Peh, On-Chip Networks (Morgan and Claypool Publishers, 2017). CrossrefGoogle Scholar
  • 7. D. A. Zaitsev, T. R. Shmeleva and J. F. Groote, Verification of hyper-torus communication grids by infinite Petri nets and process algebra, IEEE/CAA Journal of Automatica Sinica 6(3) (2019) 733–742. https://doi.org/10.1109/JAS.2019.1911486 CrossrefGoogle Scholar
  • 8. T. R. Shmeleva, Analysis of a hypertorus grid, in Proc. of IEEE 38th International Conference Electronics and Nanotechnology (ELNANO-2018), Kyiv, Ukraine, April 24–26, 2018. NTUU “Igor Sikorsky Kyiv Polytechnic Institute”, 2018, pp. 56–59. https://doi.org/10.1109/EL-NANO.2018.8477554 Google Scholar
  • 9. D. A. Zaitsev, T. R. Shmeleva, W. Retschitzegger and B. Proll, Security of grid structures under disguised traffic attacks, Cluster Computing 19(3) (2016) 1183–1200. https://doi.org/10.1007/s10586-016-0582-9 Crossref, Web of ScienceGoogle Scholar
  • 10. D. A. Zaitsev, Verification of computing grids with special edge conditions by infinite Petri nets, Automatic Control and Computer Sciences 47(7) (2013) 403–412. https://doi.org/10.3103/S0146411613070262 CrossrefGoogle Scholar
  • 11. D. A. Zaitsev and T. R. Shmeleva, Verification of hypercube communication structures via parametric Petri nets, Cybernetics and Systems Analysis 46(1) (2010) 105–114. https://doi.org/10.1007/s10559-010-9189-y CrossrefGoogle Scholar
  • 12. F. Versaci, OutFlank routing: Increasing throughput in toroidal interconnection networks, in Proc. of 2013 International Conference on Parallel and Distributed Systems (ICPADS) (2013), pp. 216–223. CrossrefGoogle Scholar
  • 13. P. Ren, M. A. Kinsy and N. Zheng, Fault-aware load-balancing routing for 2D-mesh and torus on-chip network topologies, IEEE Transactions on Computers 65(3) (2016) 873–887. CrossrefGoogle Scholar
  • 14. P. Xie, H. Gu, K. Wang, X. Yu and S. Ma, Mesh-of-Torus: A new topology for server-centric data center networks, The Journal of Supercomputing 75 (2019) 255. CrossrefGoogle Scholar
  • 15. C. Chaintoutis, A. Bogris and D. Syvridis, P-Torus: Torus-based optical packet switching architecture for intra-data centre networks, in Proc. of 2018 Photonics in Switching and Computing (PSC), Limassol, Cyprus, 2018, pp. 1–3. https://doi.org/10.1109/PS.2018.8751276 Google Scholar
  • 16. D. A. Zaitsev, A generalized neighborhood for cellular automata, Theoretical Computer Science 666 (2017) 21–35. https://doi.org/10.1016/j.tcs.2016.11.002 Crossref, Web of ScienceGoogle Scholar
  • 17. N. P. Preve (Ed.), Grid Computing: Towards a Global Interconnected Infrastructure (Springer, 2011). CrossrefGoogle Scholar
  • 18. R. Sanjay and S. Sartaj, Hypercube Algorithms: With Application to Image Processing and Pattern Recognition (Springer, 2011). Google Scholar
  • 19. K. Miyamoto, Plasma Physics and Controlled Nuclear Fusion (Springer, 2005). Google Scholar
  • 20. D. Gilbert, M. Heiner, F. Liu and N. Saunders, Colouring space – A coloured framework for spatial modelling in systems biology, in Proc. PETRI NETS 2013, Milano, LNCS, Vol. 7927 (Springer, 2013), pp. 230–249. Google Scholar
  • 21. D. A. Zaitsev, S. I. Tymchenko and N. Z. Shtefan, Switching vs routing within multi-dimensional torus interconnect, in PIC&ST2020, October 6–9, 2020, Kharkiv, Ukraine. Google Scholar
  • 22. D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva, Infinite Petri nets: Part 1, Modeling square grid structures, Complex Systems 26(2) (2017) 157–195. https://doi.org/10.25088/ComplexSystems.26.2.157 CrossrefGoogle Scholar
  • 23. D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva, Infinite Petri nets: Part 2, Modeling triangular, hexagonal, hypercube and hypertorus structures, Complex Systems 26(4) (2017) 341–371. https://doi.org/10.25088/ComplexSystems.26.2.341 CrossrefGoogle Scholar
  • 24. W. J. Dally and C. L. Seitz, The torus routing chip, Distrib. Comput. 1 (1986) 187–196. Crossref, Web of ScienceGoogle Scholar
  • 25. A. Singh, W. J. Dally, B. Towles and A. K. Gupta, Globally adaptive load-balanced routing on tori, IEEE Computer Architecture Letters 3(1) (January 2004) 2–2. CrossrefGoogle Scholar
  • 26. H. Wang, D. Xu and L. Li, A novel globally adaptive load-balanced routing algorithm for torus interconnection networks, ETRI Journal 29 (2007) 405. Crossref, Web of ScienceGoogle Scholar
  • 27. H. Gu, J. Zhang, K. Wang and C. Wang, rHALB: A new load-balanced routing algorithm for k-ary n-cube networks, in Advanced Parallel Processing Technologies (APPT 2007), eds. M. Xu, Y. Zhan, J. Cao and Y. Liu, Lecture Notes in Computer Science, Vol. 4847 (Springer, 2007). CrossrefGoogle Scholar
  • 28. K. Kaneko and A. Bossard, A set-to-set disjoint paths routing algorithm in tori, International Journal of Networking and Computing 7(2) (July 2017) 173–186. CrossrefGoogle Scholar
  • 29. D. A. Zaitsev, T. R. Shmeleva and A. I. Sleptsov, Reenterable colored Petri net models of networks, grids, and clouds: Case study for provider backbone bridge, in Proc. of 26th Telecommunications Forum (TELFOR 2018), November 20–21, 2018, Belgrade, Serbia. https://doi.org/10.1109/TELFOR.2018.8611840 Google Scholar
  • 30. K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and Validation of Concurrent Systems (Springer, 2009). CrossrefGoogle Scholar
  • 31. K. L. Utley, Re-enterable programming, IBM Technical Disclosure Bulletin 13(9) (1971) 2505–2507. Google Scholar
  • 32. J. D. Ullman, Elements of ML Programming (Prentice-Hall, 1997). Google Scholar
  • 33. CPN Tools, http://cpntools.org. Google Scholar
  • 34. D. A. Zaitsev, T. R. Shmeleva and R. Retschitzegger, Spatial specification of grid structures by Petri nets, micro-electronics and telecommunication engineering, in Proceedings of 4th ICMETE 2020, Lecture Notes in Networks and Systems, Vol. 179 (2021). Google Scholar
  • 35. T. R. Shmeleva, Transformations of models of 2-dimensional grids colored Petri nets into infinite Petri nets and vise versa, in Proc. of 2018 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), Odessa, Ukraine, September 10–14, 2018, pp. 1–6. Google Scholar
  • 36. Cut-Through and Store-and-Forward Ethernet Switching for Low-Latency Environments, Cisco White Paper, 2008. Google Scholar
  • 37. D. Medhi and K. Ramasamy, Network Routing Algorithms, Protocols, and Architectures (Morgan Kaufmann, 2018), 1018 pp. Google Scholar
  • 38. O. Lemeshko, M. Yevdokymenko and O. Yeremenko, Load-balancing fast rerouting model with providing fair priority-based traffic policing, in Proc. of 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T), Kyiv, Ukraine, 2019, pp. 538–542. Google Scholar
  • 39. Z. W. Li and M. C. Zhou, Deadlock Resolution in Automated Manufacturing Systems (Springer, 2010). Google Scholar
  • 40. M. Diaz, Petri Nets: Fundamental Models, Verification and Applications (John Wiley & Sons, 2013). Google Scholar