The dynamics of CO2 emissions and economic growth: A comparative analysis using symbolic time series
Abstract
The aim of this paper is to analyze the dynamic relationship between economic growth and CO2 emissions for a set of 98 countries over the lengthy period from 1951 to 2014. We describe the topology and hierarchy of countries and introduce a different concept of economic performance based on the idea of dynamic regimes. These regimes are defined by the average levels of per-capita CO2 emissions and the growth rates of per-capita GDP. By presenting a nonparametric clustering technique, the paper identifies two main groups. One cluster can be identified as the group of developed countries, which presents a homogeneous structure and tends toward more similar dynamics over time. The other cluster, associated with developing countries, is homogeneous but the dynamics of the countries do not show convergence. The study also finds some, though little, mobility between the groups.
References
- 1.
IPCC ,Summary for policymakers , in Global Warming of 1.5∘C: An IPCC Special Report on the Impacts of Global Warming of 1.5∘C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, eds. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (World Meteorological Organization, 2018), pp. 4–24. Google Scholar - 2.
OECD , Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences (OECD Publishing, Paris, 2019). Crossref, Google Scholar - 3.
IRP , Global Resources Outlook 2019: Natural Resources for the Future We Want, eds. B. Oberle, S. Bringezu, S. Hatfeld-Dodds, S. Hellweg, H. Schandl, J. Clement, L. Cabernard, N. Che, D. Chen, H. Droz-Georget, P. Ekins, M. FischerKowalski, M. Flörke, S. Frank, A. Froemelt, A. Geschke, M. Haupt, P. Havlik, R. Hüfner, M. Lenzen, M. Lieber, B. Liu, Y. Lu, S. Lutter, J. Mehr, A. Miatto, D. Newth, C. Oberschelp, M. Obersteiner, S. Pfster, E. Piccoli, R. Schaldach, J. Schüngel, T. Sonderegger, A. Sudheshwar, H. Tanikawa, E. van der Voet, C. Walker, J. West, Z. Wang and B. Zhu (United Nations Environment Programme, Nairobi, 2019), https://wedocs.unep.org/. Google Scholar - 4. United States Environmental Protection Agency (EPA), Inventory of U.S. greenhouse gas emissions and sinks 1990-2015, Report No. EPA 430-P-17-001 (2017). Google Scholar
- 5. , J. Bus. Econ. Manage. 21, 1 (2020). Crossref, Web of Science, Google Scholar
- 6. , Sustain. Dev. 28, 723 (2020). Crossref, Web of Science, Google Scholar
- 7. , Renew. Sustain. Energy Rev. 68, 808 (2017). Crossref, Web of Science, Google Scholar
- 8. , Environ. Sci. Pollut. Res. Int. 27, 35349 (2020). Crossref, Web of Science, Google Scholar
- 9. , Energy Econ. 85, 104571 (2020). Crossref, Web of Science, Google Scholar
- 10. , Physica A 506, 179 (2018). Crossref, Web of Science, ADS, Google Scholar
- 11. , Econ. Model. 53, 388 (2016). Crossref, Web of Science, Google Scholar
- 12. , Econ. Model. 77, 70 (2019). Crossref, Web of Science, Google Scholar
- 13. , Appl. Energy 87, 1858 (2010). Crossref, Web of Science, ADS, Google Scholar
- 14. , Am. Econ. Rev. 45, 1 (1955). Web of Science, Google Scholar
- 15. G. M. Grossman and A. B. Krueger, Environmental impacts of a North American Free Trade Agreement, NBER Working Paper No. 3914, National Bureau of Economic Research, Cambridge, Massachusetts (1991). Google Scholar
- 16. , Environ. Resour. Econ. 42, 551 (2006). Crossref, Web of Science, Google Scholar
- 17. , Energy Policy 51, 184 (2012). Crossref, Web of Science, Google Scholar
- 18. , Renew. Sustain. Energy Rev. 25, 494 (2013). Crossref, Web of Science, Google Scholar
- 19. , J. Clean. Prod. 140, 1719 (2017). Crossref, Web of Science, Google Scholar
- 20. , Energy Econ. 74, 677 (2018). Crossref, Web of Science, Google Scholar
- 21. , Renew. Sustain. Energy Rev. 65, 175 (2016). Crossref, Web of Science, Google Scholar
- 22. , Energy 179, 232 (2019). Crossref, Web of Science, Google Scholar
- 23. , PLoS ONE 14, e0217319 (2019). Google Scholar
- 24. , Environ. Impact Assess. Rev. 71, 60 (2018). Crossref, Web of Science, Google Scholar
- 25. , Energy Policy 118, 58 (2018). Crossref, Web of Science, Google Scholar
- 26. , Adv. Clim. Chang. Res. 7, 192 (2016). Crossref, Google Scholar
- 27. , Appl. Energy 236, 163 (2019). Crossref, Web of Science, ADS, Google Scholar
- 28. , Energy 44, 682 (2012). Crossref, Web of Science, Google Scholar
- 29. , Cogent Econ. Finance 5, 1379239 (2017). Crossref, Web of Science, Google Scholar
- 30. , Environ. Res. Lett. 15, 065003 (2020). Crossref, Web of Science, Google Scholar
- 31. , Environ. Res. Lett. 15, 063002 (2020). Crossref, Web of Science, Google Scholar
- 32. , J. Clean. Prod. 234, 1113 (2019). Crossref, Web of Science, Google Scholar
- 33. , Energy Rep. 5, 1103 (2019). Crossref, Web of Science, Google Scholar
- 34. , Ecol. Econ. 49, 431 (2004). Crossref, Web of Science, Google Scholar
- 35. , Environ. Econ. Policy Stud. 22, 585 (2020). Crossref, Web of Science, Google Scholar
- 36. , Physica A 392, 5678 (2013). Crossref, Web of Science, ADS, Google Scholar
- 37. , Physica A 451, 429 (2016). Crossref, Web of Science, ADS, Google Scholar
- 38. , Physica A 454, 1 (2016). Crossref, Web of Science, ADS, Google Scholar
- 39. , Chin. J. Phys. 60, 12 (2019). Crossref, Web of Science, Google Scholar
- 40. , Sustain. Prod. Consum. 22, 58 (2020). Crossref, Web of Science, Google Scholar
- 41. T. A. Boden, G. Marland and R. J. Andres, Global, regional, and national fossil-fuel CO2 emissions, Global, Regional, and National Annual Time Series, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA (2017), doi:10.3334/CDIAC/00001_V2017. Google Scholar
- 42. , Struct. Change Econ. Dyn. 14, 133 (2003). Crossref, Google Scholar
- 43. , Struct. Change Econ. Dyn. 14, 159 (2003). Crossref, Google Scholar
- 44. , Eur. Phys. J. B 11, 193 (1999). Crossref, Web of Science, ADS, Google Scholar
- 45. , An introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, 2000). Google Scholar
- 46. , Chaos 14, 1026 (2004). Crossref, Web of Science, ADS, Google Scholar
- 47. , Eur. Phys. J. B 15, 733 (2000). Crossref, Web of Science, ADS, Google Scholar
- 48. , Phys. Lett. A 190, 393 (1994). Crossref, Web of Science, ADS, Google Scholar
- 49. , Phys. Rev. E 51, 3871 (1995). Crossref, Web of Science, ADS, Google Scholar
- 50. , Physica D 102, 253 (1997). Crossref, Web of Science, ADS, Google Scholar
- 51. , Proc. Am. Math. Soc. 7, 48 (1956). Crossref, Google Scholar
- 52. , Psychometrika 2, 241 (1967). Crossref, Web of Science, Google Scholar
- 53. , Commun. Stat., Theory Methods 3, 1 (1974). Crossref, Google Scholar
- 54. , Pattern Classification and Scene Analysis (Wiley, New York, 1973). Google Scholar
- 55. , Appl. Energy 231, 937 (2018). Crossref, Web of Science, ADS, Google Scholar
- 56. IEA, Global CO2 emissions in 2019 (2020), Data Release, February 11, https://www.iea.org/articles/global-co2-emissions-in-2019. Google Scholar
- 57. , Appl. Energy 235, 186 (2019). Crossref, Web of Science, ADS, Google Scholar
- 58. K. Levin and D. Rich, Turning points: Trends in countries’ reaching peak greenhouse gas emissions over time, Working Paper, World Resources Institute, Washington, DC (2017), http://www.wri.org/ publication/turning-points. Google Scholar
You currently do not have access to the full text article. |
---|