World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Mathematical modeling of diabetes and its restrain

    https://doi.org/10.1142/S012918312150114XCited by:3 (Source: Crossref)

    In this paper, we have developed a mathematical model of diabetes (type-2 diabetes) in a deterministic approach. We have described our model in the population dynamics with four compartments. Namely, Susceptible, Imbalance Glucose Level (IGL), Treatment and Restrain population. Our model exhibits two nonnegative equilibrium points namely Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE). The expression for the Treatment reproduction number RT is computed. We have proved that the equilibrium points of the model are locally and globally asymptotically stable under some conditions. Numerical simulation is performed to verify our analytical findings such as stability of DFE and EE. The simulations show better results based on the required conditions. We tried to fit our model with the data given by the International Diabetes Federation (IDF) [D. Atlas, IDF Diabetes Atlas, 8th edn. (International Diabetes Federation, Brussels, Belgium, 2017)] and it suits well with the data. It has been found that our model shows the decrease in diabetes-affected population compared with the data given by the IDF [D. Atlas, IDF Diabetes Atlas, 8th edn. (International Diabetes Federation, Brussels, Belgium, 2017)].

    References

    You currently do not have access to the full text article.

    Recommend the journal to your library today!