World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Strictly nef divisors on singular threefolds

    https://doi.org/10.1142/S0129167X2450054XCited by:0 (Source: Crossref)

    Let X be a normal projective variety with klt singularities and LX a strictly nef -divisor on X. In this paper, we study the singular version of Serrano’s conjecture, i.e. the ampleness of KX+tLX for t1. We show that, if X is a -factorial Gorenstein terminal threefold, then KX+tLX is ample for t1 unless X is a weak Calabi–Yau variety (i.e. the canonical divisor KX is a -torsion and the augmented irregularity q(X) vanishes) with LXc2(X)=0.

    Communicated by Jungkai A. Chen

    AMSC: 14E30, 14J30

    References

    • 1. F. Ambro , The moduli b-divisor of an lc-trivial fibration, Compos. Math. 141 (2005) 385–403. Crossref, Web of ScienceGoogle Scholar
    • 2. M. Artin , Algebraization of formal moduli. II. Existence of modifications, Ann. Math. 91 (1970) 88–135. CrossrefGoogle Scholar
    • 3. X. Benveniste , Sur le cone des 1-cycles effectifs en dimension 3, Math. Ann. 272 (1985) 257–265. CrossrefGoogle Scholar
    • 4. C. Birkar, P. Cascini, C. D. Hacon and J. McKernan , Existence of minimal models for varieties of log general type, J. Am. Math. Soc. 23 (2010) 405–468. Crossref, Web of ScienceGoogle Scholar
    • 5. C. Birkar and J. A. Chen , Varieties fibred over abelian varieties with fibres of log general type, Adv. Math. 270 (2015) 206–222. Crossref, Web of ScienceGoogle Scholar
    • 6. S. Boucksom, J.-P. Demailly, M. Păun and T. Peternell , The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom. 22 (2013) 201–248. Crossref, Web of ScienceGoogle Scholar
    • 7. F. Campana, J. A. Chen and T. Peternell , Strictly nef divisors, Math. Ann. 342 (2008) 363–383. Crossref, Web of ScienceGoogle Scholar
    • 8. F. Campana and T. Peternell , Projective manifolds whose tangent bundles are numerically effective, Math. Ann. 289 (1991) 169–187. Crossref, Web of ScienceGoogle Scholar
    • 9. P. Chaudhuri, Strictly nef divisors and some remarks on a conjecture of Serrano, preprint (2020), arXiv:abs/2008.05009. Google Scholar
    • 10. S. Cutkosky , Elementary contractions of Gorenstein threefolds, Math. Ann. 280 (1988) 521–525. Crossref, Web of ScienceGoogle Scholar
    • 11. O. Debarre , Higher-Dimensional Algebraic Geometry, Universitext (Springer-Verlag, New York, NY, 2001). CrossrefGoogle Scholar
    • 12. J.-P. Demailly , Analytic Methods in Algebraic Geometry, Surveys of Modern Mathematics, Vol. 1 (International Press, Sommerville, 2010). Google Scholar
    • 13. O. Fujino , Minimal model theory for log surfaces, Publ. Res. Inst. Math. Sci. 48 (2012) 339–371. Crossref, Web of ScienceGoogle Scholar
    • 14. M. Fulger, J. Kollár and B. Lehmann , Volume and Hilbert function of -divisors, Mich. Math. J. 65 (2016) 371–387. Crossref, Web of ScienceGoogle Scholar
    • 15. W. Fulton and R. Lazarsfeld , Connectivity and its applications in algebraic geometry, in Algebraic Geoemtry, Proc. Midwest Algebraic Geometry Conf., University of Illinois at Chicago Circle, May 2-3, 1980, Lecture Notes in Mathematics, Vol. 862, eds. A. Libgober and P. Wagreich (Springer-Verlag, Berlin, 1981), pp. 26–92. CrossrefGoogle Scholar
    • 16. P. Graf , Algebraic approximation of Kähler threefolds of Kodaira dimension zero, Math. Ann. 371 (2018) 487–516. Crossref, Web of ScienceGoogle Scholar
    • 17. D. Greb, S. Kebekus and T. Peternell , Étale fundamental groups of Kawamata log terminal spaces, flat sheaves and quotients of abelian varieties, Duke Math. J. 165 (2016) 1965–2004. CrossrefGoogle Scholar
    • 18. C. D. Hacon , A derived category approach to generic vanishing, J. Reine Angew. Math. 575 (2004) 173–187. Web of ScienceGoogle Scholar
    • 19. J. Han and W. Liu , On numerical nonvanishing for generalized log canonical pairs, Doc. Math. 25 (2020) 93–123. Crossref, Web of ScienceGoogle Scholar
    • 20. R. Hartshorne , Ample Subvarieties of Algebraic Varieties, Lecture Notes in Mathematics, Vol. 156 (Springer-Verlag, Berlin, 1970). CrossrefGoogle Scholar
    • 21. R. Hartshorne , Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52 (Springer-Verlag, New York, NY, 1977). CrossrefGoogle Scholar
    • 22. A. Höring and T. Peternell , Minimal models for Kähler threefolds, Invent. Math. 203 (2016) 217–264. Crossref, Web of ScienceGoogle Scholar
    • 23. Y. Kawamata , Elementary contractions of algebraic 3-folds, Ann. Math. (2) 119 (1984) 95–110. Crossref, Web of ScienceGoogle Scholar
    • 24. Y. Kawamata , Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. Math. 127 (1988) 93–163. Crossref, Web of ScienceGoogle Scholar
    • 25. Y. Kawamata, K. Matsuda and K. Matsuki , Introduction to the minimal model problem, in Algebraic Geometry, Sendai, 1985, Advanced Studies in Pure Mathematics, Vol. 10 (North-Holland, Amsterdam, 1987), pp. 283–360. CrossrefGoogle Scholar
    • 26. J. Kollár , Rational Curves on Algebraic Varieties, Vol. 3, Folge, Band 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete (Springer-Verlag, Berliln, 1996), Corrected Second Printing 1999. CrossrefGoogle Scholar
    • 27. J. Kollár , Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics, Vol. 200 (Cambridge University Press, Cambridge, 2013). CrossrefGoogle Scholar
    • 28. J. Kollár and S. Mori , Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, Vol. 134 (Cambridge University Press, Cambridge, 1998). CrossrefGoogle Scholar
    • 29. V. Lazić and T. Peternell , On generalised abundance, I, Publ. Res. Inst. Math. Sci. 56 (2020) 353–389. Crossref, Web of ScienceGoogle Scholar
    • 30. V. Lazić and T. Peternell , On generalised abundance, II, Peking Math. J. 3 (2020) 1–46. CrossrefGoogle Scholar
    • 31. H. Liu and S. ichi Matsumura , Strictly nef divisors on K-trivial fourfolds, Math. Ann. 387 (2023) 985–1008. Crossref, Web of ScienceGoogle Scholar
    • 32. H. Liu and R. Svaldi , Rational curves and strictly nef divisors on Calabi-Yau threefolds, Doc. Math. 27 (2022) 1581–1604. Crossref, Web of ScienceGoogle Scholar
    • 33. J. Liu, W. Ou, J. Wang, X. Yang and G. Zhong , Algebraic fibre spaces with strictly nef relative anti-log canonical divisor, to appear in J. Lond. Math. Soc. 109(6) e12942, 26 p. (2024). Crossref, Web of ScienceGoogle Scholar
    • 34. H. Maeda , A criterion for a smooth surface to be Del Pezzo, Math. Proc. Camb. Philos. Soc. 113 (1993) 1–3. CrossrefGoogle Scholar
    • 35. S. Meng and D.-Q. Zhang , Building blocks of polarized endomorphisms of normal projective varieties, Adv. Math. 325 (2018) 243–273. Crossref, Web of ScienceGoogle Scholar
    • 36. M. Miyanishi , Algebraic methods in the theory of algebraic threefolds — surrounding the works of Iskovskikh, Mori and Sarkisov, in Algebraic Varieties and Analytic Varieties (Tokyo, 1981), Advanced Studies in Pure Mathematics, Vol. 1 (North-Holland, Amsterdam, 1983), pp. 69–99. CrossrefGoogle Scholar
    • 37. Y. Miyaoka , The Chern classes and Kodaira dimension of a minimal variety, in Algebraic Geometry, Sendai, 1985, Advanced Studies in Pure Mathematics, Vol. 10 (North-Holland, Amsterdam, 1987), pp. 449–476. CrossrefGoogle Scholar
    • 38. S. Mukai , Duality between D(X) and D(X̂) with its application to Picard sheaves, Nagoya Math. J. 81 (1981) 153–175. Crossref, Web of ScienceGoogle Scholar
    • 39. N. Nakayama , The lower semicontinuity of the plurigenera of complex varieties, in Algebraic Geometry, Sendai, 1985, Advanced Studies in Pure Mathematics, Vol. 10 (North-Holland, Amsterdam, 1987), pp. 551–590. CrossrefGoogle Scholar
    • 40. N. Nakayama and D.-Q. Zhang , Polarized endomorphisms of complex normal varieties, Math. Ann. 346 (2010) 991–1018. Crossref, Web of ScienceGoogle Scholar
    • 41. Y. Namikawa , Projectivity criterion of Moishezon spaces and density of projective symplectic varieties, Int. J. Math. 13 (2002) 125–135. Link, Web of ScienceGoogle Scholar
    • 42. G. D. Noce , On the Picard number of singular Fano varieties, Int. Math. Res. Not. 2014 (2014) 955–990. CrossrefGoogle Scholar
    • 43. T. Peternell , Algebraicity criteria for compact complex manifolds, Math. Ann. 275 (1986) 653–672. Crossref, Web of ScienceGoogle Scholar
    • 44. M. Reid , Young person’s guide to canonical singularities, in Algebraic Geometry — Bowdoin 1985, Proceedings of Symposia in Pure Mathematics, Vol. 48, ed. S. Bloch (American Mathematical Society, Providence, RI, 1987), pp. 345–414. CrossrefGoogle Scholar
    • 45. E. A. Romano , Non-elementary Fano conic bundles, Collect. Math. 70 (2019) 33–50. Crossref, Web of ScienceGoogle Scholar
    • 46. F. Serrano , Strictly nef divisors and Fano threefolds, J. Reine Angew. Math. 464 (1995) 187–206. Web of ScienceGoogle Scholar
    • 47. N. I. Shepherd-Barron and P. M. H. Wilson , Singular threefolds with numerically trivial first and second Chern classes, J. Algebr. Geom. 3 (1994) 265–281. Google Scholar
    • 48. Y. T. Siu , Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974) 53–156. Crossref, Web of ScienceGoogle Scholar
    • 49. H. Uehara , On the canonical threefolds with strictly nef anticanonical divisors, J. Reine Angew. Math. 522 (2000) 81–91. Web of ScienceGoogle Scholar
    • 50. R. van Dobben de Bruyn, Infinitely small intersections with nef R-cartier divisors, Mathoverflow (2018), https://mathoverflow.net/questions/291154/infinitely-small-intersections-with-nef-mathbb-r-cartier-divisors. Google Scholar
    • 51. D.-Q. Zhang , n-dimensional projective varieties with the action of an abelian group of rank n 1, Trans. Amer. Math. Soc. 368 (2016) 8849–8872. Crossref, Web of ScienceGoogle Scholar