World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Forest-skein groups II: Construction from homogeneously presented monoids

    https://doi.org/10.1142/S0129167X23500428Cited by:0 (Source: Crossref)

    Inspired by the reconstruction program of conformal field theories of Vaughan Jones we recently introduced a vast class of the so-called forest-skein groups. They are built from a skein presentation: a set of colors and a set of pairs of colored trees. Each nice skein presentation produces four groups similar to Richard Thompson’s group F,T,V and the braided version BV of Brin and Dehornoy.

    In this paper, we consider forest-skein groups obtained from one-dimensional skein presentations; the data of a homogeneous monoid presentation. We decompose these groups as wreath products. This permits to classify them up to isomorphisms. Moreover, we prove that a number of properties of the fraction group of the monoid pass through the forest-skein groups such as the Haagerup property, homological and topological finiteness properties, and orderability.

    Communicated by Yasuyuki Kawahigashi

    AMSC: 20F38, 20F69

    References

    • 1. M. Bestvina and N. Brady , Morse theory and finiteness properties of groups, Invent. Math. 129(3) (1997) 445–470. Crossref, Web of ScienceGoogle Scholar
    • 2. L. Bartholdi, Y. de Cornulier and D. Kochloukova , Homological finiteness properties of wreath products, Quart. J. Math. 66 (2015) 437–457. Crossref, Web of ScienceGoogle Scholar
    • 3. K.-W. Bux, M. Fluch, M. Marschler, S. Witzel and M. Zaremsky , The braided Thompson’s groups are of type F, J. Reine Angew. Math. 718 (2016) 59–101. Crossref, Web of ScienceGoogle Scholar
    • 4. J. Burillo and J. Gonzalez-Meneses , Bi-orderings on pure braided Thompson’s groups, Quart. J. Math. 59 (2008) 1–14. Crossref, Web of ScienceGoogle Scholar
    • 5. A. Brothier and V. F. R. Jones , On the Haagerup and Kazhdan property of R. Thompson’s groups, J. Group Theory 22(5) (2015) 795–807. Crossref, Web of ScienceGoogle Scholar
    • 6. M. Brin , The chameleon groups of Richards J. Thompson: Automorphisms and dynamics, Publ. Math. Inst. Hautes Études Sci. 84 (1996) 5–33. CrossrefGoogle Scholar
    • 7. M. Brin , Higher dimensional Thompson groups, Geom. Dedicata 108 (2004) 163–192. Crossref, Web of ScienceGoogle Scholar
    • 8. M. Brin , The algebra of stand splitting. I. A braided version of Thompson’s group V, J. Group Theory 10(6) (2007) 757–788. Crossref, Web of ScienceGoogle Scholar
    • 9. M. Brin , The algebra of strand splitting II: A presentation for the braid group on one strand, Int. J. Algebra Comput. 16(1) (2006) 203–2019. Link, Web of ScienceGoogle Scholar
    • 10. M. Brin and C. Squier , Groups of piecewise linear homeomorphisms of the real line, Invent. Math., 79 (1985) 485–498. Crossref, Web of ScienceGoogle Scholar
    • 11. K. Brown , Cohomology of Groups (Springer, 1982). CrossrefGoogle Scholar
    • 12. K. S. Brown , Finiteness properties of groups, J. Pure. App. Algebra 44 (1987) 45–75. Crossref, Web of ScienceGoogle Scholar
    • 13. A. Brothier , Haagerup property for wreath products constructed with Thompson’s groups, Groups Geom. Dyn. 17(2) (2023) 671–718, https://doi.org/10.4171/ggd/714. Crossref, Web of ScienceGoogle Scholar
    • 14. A. Brothier , On Jones’ connections between subfactors, conformal field theory, Thompson’s groups and knots, Celebratio Mathematica in the Volume Vaughan F. R. Jones (2020). Google Scholar
    • 15. A. Brothier , Classification of Thompson related groups arising from Jones technology II, Bull. Soc. Math. Fr. 149(4) (2021) 663–725. Web of ScienceGoogle Scholar
    • 16. A. Brothier , Classification of Thompson related groups arising from Jones technology I, Int. Math. Res. Not. (7) (2022) 5974–6044. Crossref, Web of ScienceGoogle Scholar
    • 17. A. Brothier, Forest-skein groups I: between Vaughan Jones’ subfactors and Richard Thompon’s groups, preprint (2022), arXiv:2207.03100 . Google Scholar
    • 18. A. Brothier and R. Seelig, Forest-skein groups III: Dynamic and simplicity, in preparation (2023). Google Scholar
    • 19. A. Callard and V. Salo, Distorsion element in the automorphism group of a full shift, preprint (2022), arXiv:2208.00685 . Google Scholar
    • 20. J. W. Cannon, W. J. Floyd and W. R. Parry , Introductory notes on Richard Thompson’s groups, Enseign. Math. 42 (1996) 215–256. Web of ScienceGoogle Scholar
    • 21. I. Chatterji and G. Niblo , From wall spaces to CAT(0) cube complexes, Int. J. Algebra Comput. 15(5–6) (2005) 875–885. Link, Web of ScienceGoogle Scholar
    • 22. P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg and A. Valette , Groups with the Haagerup Property, Progress in Mathematics, Vol. 197 (Birkhauser, 2001). Google Scholar
    • 23. Y. Cornulier, Y. Stalder and A. Valette , Proper actions of wreath products and generalizations, Trans. Amer. Math. Soc. 346(6) (2012) 3159–3184. Crossref, Web of ScienceGoogle Scholar
    • 24. P. Dehornoy , Thin groups of fractions, Contemp. Math. 296 (2002) 95–128. CrossrefGoogle Scholar
    • 25. P. Dehornoy , The group of parenthesized braids, Adv. Math. 205 (2006) 354–409. Crossref, Web of ScienceGoogle Scholar
    • 26. D. Farley , Finiteness and CAT(0) properties of diagram groups, Topology 5 (2003) 1065–1082. CrossrefGoogle Scholar
    • 27. R. Geoghegan , Topological Methods in Group Theory (Springer, 2007). Google Scholar
    • 28. V. Guba and M. Sapir , Diagram groups, Mem. Amer. Math. Soc. 130(620) 1997. Web of ScienceGoogle Scholar
    • 29. N. Higson and G. Kasparov , Operator K-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001) 23–74. Crossref, Web of ScienceGoogle Scholar
    • 30. B. Hughes , Local similarities and the Haagerup property, Groups Geom. Dyn. 3 (2009) 299–315. Crossref, Web of ScienceGoogle Scholar
    • 31. T. Ishida , Ordering of Witzel–Zaremsky–Thompson groups, Commun. Algebra 46(9) (2018) 3806–38009. Crossref, Web of ScienceGoogle Scholar
    • 32. V. F. R. Jones, Planar algebras I, preprint (1999), arXiv:9909.027 . Google Scholar
    • 33. V. F. R. Jones , Some unitary representations of Tompson’s groups F and T, J. Comb. Algebra 1(1) (2017) 1–44. Crossref, Web of ScienceGoogle Scholar
    • 34. V. F. R. Jones , On the construction of knots and links from Thompson’s groups, in Knots, Low-Dimensional Topology and Applications, eds. C. Adams et al., Springer Proceedings in Mathematics & Statistics, Vol. 284 (Springer, Cham, 2019). CrossrefGoogle Scholar
    • 35. S. Tanushevski , A new class of generalized Thompson’s groups and their normal subgroups, Commun. Algebra 44 (2016) 4378–4410. Crossref, Web of ScienceGoogle Scholar
    • 36. S. Tanushevski , Presentations for a class of generalized Thompson’s groups, Commun. Algebra 45(5) (2017) 2074–2090. Crossref, Web of ScienceGoogle Scholar
    • 37. W. Thumann , Operad groups and their finiteness properties, Adv. Math. 307 (2017) 417–487. Crossref, Web of ScienceGoogle Scholar
    • 38. A. Valette , Proper isometric actions on Hilbert spaces: A-(T)-menability and Haagerup property, Handbook Group Actions 4(12) (2018) 623–652. Google Scholar
    • 39. S. Witzel and M. Zaremsky , Thompson groups for systems of groups, and their finiteness properties, Groups Geom. Dyn. 12(1) (2018) 289–358. Crossref, Web of ScienceGoogle Scholar
    • 40. M. Zaremsky , A user’s guide to cloning systems, Topol. Proc. 52 (2018) 13–33. Google Scholar
    • 41. M. Zaremsky , A short account of why Thompson’s group F is of type F, Topol. Proc. 57 (2021) 77–86. Google Scholar