World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Alzheimer’s Disease Evaluation Through Visual Explainability by Means of Convolutional Neural Networks

    https://doi.org/10.1142/S0129065724500072Cited by:1 (Source: Crossref)

    Background and Objective: Alzheimer’s disease is nowadays the most common cause of dementia. It is a degenerative neurological pathology affecting the brain, progressively leading the patient to a state of total dependence, thus creating a very complex and difficult situation for the family that has to assist him/her. Early diagnosis is a primary objective and constitutes the hope of being able to intervene in the development phase of the disease. Methods: In this paper, a method to automatically detect the presence of Alzheimer’s disease, by exploiting deep learning, is proposed. Five different convolutional neural networks are considered: ALEX_NET, VGG16, FAB_CONVNET, STANDARD_CNN and FCNN. The first two networks are state-of-the-art models, while the last three are designed by authors. We classify brain images into one of the following classes: non-demented, very mild demented and mild demented. Moreover, we highlight on the image the areas symptomatic of Alzheimer presence, thus providing a visual explanation behind the model diagnosis. Results: The experimental analysis, conducted on more than 6000 magnetic resonance images, demonstrated the effectiveness of the proposed neural networks in the comparison with the state-of-the-art models in Alzheimer’s disease diagnosis and localization. The best results in terms of metrics are the best with STANDARD_CNN and FCNN with accuracy, precision and recall between 98% and 95%. Excellent results also from a qualitative point of view are obtained with the Grad-CAM for localization and visual explainability. Conclusions: The analysis of the heatmaps produced by the Grad-CAM algorithm shows that in almost all cases the heatmaps highlight regions such as ventricles and cerebral cortex. Future work will focus on the realization of a network capable of analyzing the three anatomical views simultaneously.

    References

    • 1. M. Ahmadlou, A. Adeli, R. Bajo and H. Adeli, Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task, Clin. Neurophysiol. 125(4) (2014) 694–702. Crossref, Medline, Web of ScienceGoogle Scholar
    • 2. J. L. Cummings and G. Cole, Alzheimer disease, JAMA 287(18) (2002) 2335–2338. Crossref, Medline, Web of ScienceGoogle Scholar
    • 3. H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease, Neurosci. Lett. 444(2) (2008) 190–194. Crossref, Medline, Web of ScienceGoogle Scholar
    • 4. M. Ahmadlou, H. Adeli and A. Adeli, New diagnostic EEG markers of the Alzheimer’s disease using visibility graph, J. Neural Transm. 117 (2010) 1099–1109. Crossref, Medline, Web of ScienceGoogle Scholar
    • 5. M. Ahmadlou, H. Adeli and A. Adeli, Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer disease, Alzheimer Dis. Assoc. Disord. 25(1) (2011) 85–92. Crossref, Medline, Web of ScienceGoogle Scholar
    • 6. Z. Sankari, H. Adeli and A. Adeli, Intrahemispheric, interhemispheric, and distal EEG coherence in Alzheimer’s disease, Clin. Neurophysiol. 122(5) (2011) 897–906. Crossref, Medline, Web of ScienceGoogle Scholar
    • 7. S. Hulbert and H. Adeli, EEG/MEG- and imaging-based diagnosis of Alzheimer’s disease, Rev. Neurosci. 24(6) (2013) 563–576. Crossref, Medline, Web of ScienceGoogle Scholar
    • 8. E. Perez-Valero, C. Morillas, M. A. Lopez-Gordo and J. Minguillon, Supporting the detection of early Alzheimer’s disease with a four-channel EEG analysis, Int. J. Neural Syst. 33(4) (2023) 2350021. Link, Web of ScienceGoogle Scholar
    • 9. C. Porcaro, F. Vecchio, F. Miraglia, G. Zito and P. M. Rossini, Dynamics of the “cognitive” brain wave P3b at rest for Alzheimer dementia prediction in mild cognitive impairment, Int. J. Neural Syst. 32(5) (2022) 2250022. Link, Web of ScienceGoogle Scholar
    • 10. J. P. Amezquita-Sanchez, N. Mammone, F. C. Morabito and H. Adeli, A new dispersion entropy and fuzzy logic system methodology for automated classification of dementia stages using electroencephalograms, Clin. Neurol. Neurosurg. 201 (2021) 106446. Crossref, Medline, Web of ScienceGoogle Scholar
    • 11. N. Mammone, C. Ieracitano, H. Adeli, A. Bramanti and F. C. Morabito, Permutation Jaccard distance-based hierarchical clustering to estimate EEG network density modifications in MCI subjects, IEEE Trans. Neural Netw. Learn. Syst. 29(10) (2018) 5122–5135. Crossref, Web of ScienceGoogle Scholar
    • 12. S. Bhat, U. R. Acharya, N. Dadmehr and H. Adeli, Clinical neurophysiological and automated EEG-based diagnosis of the Alzheimer’s disease, Eur. Neurol. 74(3–4) (2015) 202–210. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. J. P. Amezquita-Sanchez, A. Adeli and H. Adeli, A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG), Behav. Brain Res. 305 (2016) 174–180. Crossref, Medline, Web of ScienceGoogle Scholar
    • 14. R. Xian, R. Lugu, H. Peng, Q. Yang, X. Luo and J. Wang, Edge detection method based on nonlinear spiking neural systems, Int. J. Neural Syst. 33(1) (2023) 2250060. Link, Web of ScienceGoogle Scholar
    • 15. F. Mercaldo, G. Ciaramella, G. Iadarola, M. Storto, F. Martinelli and A. Santone, Towards explainable quantum machine learning for mobile malware detection and classification, Appl. Sci. 12(23) (2022) 12025. CrossrefGoogle Scholar
    • 16. Z. Sankari and H. Adeli, Probabilistic neural networks for diagnosis of Alzheimer’s disease using conventional and wavelet coherence, J. Neurosci. Methods 197(1) (2011) 165–170. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, Alzheimer’s disease and models of computation: Imaging, classification, and neural models, J. Alzheimer’s Dis. 7(3) (2005) 187–199. Crossref, Medline, Web of ScienceGoogle Scholar
    • 18. H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, Alzheimer’s disease: Models of computation and analysis of EEGs, Clin. EEG Neurosci. 36(3) (2005) 131–140. Crossref, Medline, Web of ScienceGoogle Scholar
    • 19. O. K. Cura, A. Akan, G. C. Yilmaz and H. S. Ture, Detection of Alzheimer’s dementia by using signal decomposition and machine learning methods, Int. J. Neural Syst. 32(9) (2022) 2250042. Link, Web of ScienceGoogle Scholar
    • 20. C. Jimenez-Mesa, J. E. Arco, M. Valentí-Soler, B. Frades-Payo, M. A. Zea-Sevilla, A. Ortiz, M. Ávila-Villanueva, D. Castillo-Barnes, J. Ramírez, T. Del Ser-Quijano, C. Carnero-Pardo and J. M. Górriz, Using explainable artificial intelligence in the clock drawing test to reveal the cognitive impairment pattern, Int. J. Neural Syst. 33(4) (2023) 2350015. Link, Web of ScienceGoogle Scholar
    • 21. M. Di Giammarco, G. Iadarola, F. Martinelli, F. Mercaldo, F. Ravelli and A. Santone, Explainable deep learning for Alzheimer disease classification and localisation, in Int. Conf. Applied Intelligence and Informatics (Springer, 2022), pp. 129–143. CrossrefGoogle Scholar
    • 22. A. Farooq, S. Anwar, M. Awais and S. Rehman, A deep CNN based multi-class classification of Alzheimer’s disease using MRI, in 2017 IEEE Int. Conf. Imaging Systems and Techniques (IST) (IEEE, 2017), pp. 1–6. Google Scholar
    • 23. G. Folego, M. Weiler, R. F. Casseb, R. Pires and A. Rocha, Alzheimer’s disease detection through whole-brain 3D-CNN MRI, Front. Bioeng. Biotechnol. 8 (2020) 534592. Crossref, Medline, Web of ScienceGoogle Scholar
    • 24. W. Lin, T. Tong, Q. Gao, D. Guo, X. Du, Y. Yang, G. Guo, M. Xiao, M. Du and X. Qu, Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment, Front. Neurosci. 12 (2018) 777. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. A. W. Salehi, P. Baglat, B. B. Sharma, G. Gupta and A. Upadhya, A CNN model: Earlier diagnosis and classification of Alzheimer disease using MRI, in 2020 Int. Conf. Smart Electronics and Communication (ICOSEC) (IEEE, 2020), pp. 156–161. CrossrefGoogle Scholar
    • 26. J. Rieke, F. Eitel, M. Weygandt, J.-D. Haynes and K. Ritter, Visualizing convolutional networks for MRI-based diagnosis of Alzheimer’s disease, in Understanding and Interpreting Machine Learning in Medical Image Computing Applications (Springer, 2018), pp. 24–31. CrossrefGoogle Scholar
    • 27. Y. Fu’adah, I. Wijayanto, N. Pratiwi, F. Taliningsih, S. Rizal and M. Pramudito, Automated classification of Alzheimer’s disease based on MRI image processing using convolutional neural network (CNN) with AlexNet architecture, J. Phys., Conf. Ser. 1844(1) (2021) 012020. CrossrefGoogle Scholar
    • 28. A. Yiğit and Z. Işik, Applying deep learning models to structural MRI for stage prediction of Alzheimer’s disease, Turk. J. Electr. Eng. Comput. Sci. 28(1) (2020) 196–210. Crossref, Web of ScienceGoogle Scholar
    • 29. S. Manimurugan, Classification of Alzheimer’s disease from MRI images using CNN based pre-trained VGG-19 model, J. Comput. Sci. Intell. Technol. 1(2) (2020) 15–21. Google Scholar
    • 30. N. J. Herzog and G. D. Magoulas, Convolutional neural networks-based framework for early identification of dementia using MRI of brain asymmetry, Int. J. Neural Syst. 32(12) (2022) 2250053. Link, Web of ScienceGoogle Scholar
    • 31. G. Mirzaei and H. Adeli, Machine learning techniques for diagnosis of Alzheimer disease, mild cognitive disorder, and other types of dementia, Biomed. Signal Process. Control 72 (2022) 103293. Crossref, Web of ScienceGoogle Scholar
    • 32. G. Mirzaei, A. Adeli and H. Adeli, Imaging and machine learning techniques for diagnosis of Alzheimer’s disease, Rev. Neurosci. 27(8) (2016) 857–870. Crossref, Medline, Web of ScienceGoogle Scholar
    • 33. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra, Grad-CAM: Visual explanations from deep networks via gradient-based localization, in Proc. IEEE Int. Conf. Computer Vision (IEEE, 2017), pp. 618–626. CrossrefGoogle Scholar
    • 34. A. Krizhevsky, I. Sutskever and G. E. Hinton, ImageNet classification with deep convolutional neural networks, in Proc. 25th Int. Conf. Advances in Neural Information Processing Systems (Curran Associates, 2012), pp. 1097–1105. Google Scholar
    • 35. K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, preprint (2014), arXiv:1409.1556. Google Scholar
    • 36. I. De Falco, G. De Pietro and G. Sannino, A two-step approach for classification in Alzheimer’s disease, Sensors 22(11) (2022) 3966. Crossref, Web of ScienceGoogle Scholar
    • 37. Y. Liu, K. Tang, W. Cai, A. Chen, G. Zhou, L. Li and R. Liu, MPC-STANet: Alzheimer’s disease recognition method based on multiple phantom convolution and spatial transformation attention mechanism, Front. Aging Neurosci. 14 (2022) 918462. Crossref, Medline, Web of ScienceGoogle Scholar
    • 38. S. Murugan, C. Venkatesan, M. Sumithra, X.-Z. Gao, B. Elakkiya, M. Akila and S. Manoharan, DEMNET: A deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images, IEEE Access 9 (2021) 90319–90329. Crossref, Web of ScienceGoogle Scholar
    • 39. G. B. Frisoni, N. C. Fox, C. R. Jack, P. Scheltens and P. M. Thompson, The clinical use of structural MRI in Alzheimer disease, Nat. Rev. Neurol. 6(2) (2010) 67–77. Crossref, Medline, Web of ScienceGoogle Scholar
    • 40. S. Qiu et al., Multimodal deep learning for Alzheimer’s disease dementia assessment, Nat. Commun. 13(1) (2022) 3404. Crossref, Medline, Web of ScienceGoogle Scholar
    • 41. H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel and X. Hu, Score-CAM: Scoreweighted visual explanations for convolutional neural networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (IEEE, 2020), pp. 24–25. Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!