World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Assessing Functional Brain Network Dynamics in Dyslexia from fNIRS Data

    https://doi.org/10.1142/S012906572350017XCited by:5 (Source: Crossref)

    Developmental dyslexia is characterized by a deficit of phonological awareness whose origin is related to atypical neural processing of speech streams. This can lead to differences in the neural networks that encode audio information for dyslexics. In this work, we investigate whether such differences exist using functional near-infrared spectroscopy (fNIRS) and complex network analysis. We have explored functional brain networks derived from low-level auditory processing of nonspeech stimuli related to speech units such as stress, syllables or phonemes of skilled and dyslexic seven-year-old readers. A complex network analysis was performed to examine the properties of functional brain networks and their temporal evolution. We characterized aspects of brain connectivity such as functional segregation, functional integration or small-worldness. These properties are used as features to extract differential patterns in controls and dyslexic subjects. The results corroborate the presence of discrepancies in the topological organizations of functional brain networks and their dynamics that differentiate between control and dyslexic subjects, reaching an Area Under ROC Curve (AUC) up to 0.89 in classification experiments.

    References

    • 1. R. L. Peterson and B. F. Pennington, Developmental dyslexia, Lancet 379 (2012) 1997–2007. Crossref, Medline, Web of ScienceGoogle Scholar
    • 2. J. C. Ziegler and U. Goswami, Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory, Psychol Bull 131(1) (2005) 3. Crossref, Medline, Web of ScienceGoogle Scholar
    • 3. P. A. Thompson, C. Hulme, H. M. Nash, D. Gooch, E. Hayiou-Thomas and M. J. Snowling, Developmental dyslexia: Predicting individual risk, J. Child Psychol. Psychiatry 56 (2015) 976–987. Crossref, Medline, Web of ScienceGoogle Scholar
    • 4. M. J. Snowling, Specific disorders and broader phenotypes: The case of dyslexia, Q. J. Exp. Psychol. 61 (2008) 142–156. CrossrefGoogle Scholar
    • 5. I. Kovelman, E. S. Norton, J. A. Christodoulou, N. Gaab, D. A. Lieberman, C. Triantafyllou, M. Wolf, S. Whitfield-Gabrieli and J. D. E. Gabrieli, Brain basis of phonological awareness for spoken language in children and its disruption in dyslexia, Cereb. Cortex 22 (2012) 754–764. Crossref, Medline, Web of ScienceGoogle Scholar
    • 6. H. Park, R. A. A. Ince, P. G. Schyns, G. Thut and J. Gross, Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners, Curr. Biol. 25 (2015) 1649–1653. Crossref, Medline, Web of ScienceGoogle Scholar
    • 7. U. Goswami, A temporal sampling framework for developmental dyslexia, Trends Cogn. Sci. 15 (2011) 3–10. Crossref, Medline, Web of ScienceGoogle Scholar
    • 8. U. Goswami, A neural basis for phonological awareness? An oscillatory temporal-sampling perspective, Curr. Dir. Psychol. Sci. 27 (2018) 56–63. Crossref, Web of ScienceGoogle Scholar
    • 9. F. J. Martinez-Murcia, A. Ortiz, J. M. Gorriz, J. Ramirez, P. J. Lopez-Abarejo, M. Lopez-Zamora and J. L. Luque, EEG connectivity analysis using denoising autoencoders for the detection of dyslexia, Int. J. Neural Syst. 30 (2020) 2050037. Link, Web of ScienceGoogle Scholar
    • 10. M. Lizarazu, M. Lallier, N. Molinaro, M. Bourguignon, P. M. Paz-Alonso, G. Lerma-Usabiaga and M. Carreiras, Developmental evaluation of atypical auditory sampling in dyslexia: Functional and structural evidence, Hum. Brain Mapp. 36 (2015) 4986–5002. Crossref, Medline, Web of ScienceGoogle Scholar
    • 11. N. Molinaro, M. Lizarazu, M. Lallier, M. Bourguignon and M. Carreiras, Out-of-synchrony speech entrainment in developmental dyslexia, Hum. Brain Mapp. 37(8) (2016) 2767–2783. Crossref, Medline, Web of ScienceGoogle Scholar
    • 12. V. Leong and U. Goswami, Acoustic-emergent phonology in the amplitude envelope of child-directed speech, PLoS ONE 10 (2015) e0144411. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. A.-L. Giraud and D. Poeppel, Cortical oscillations and speech processing: Emerging computational principles and operations, Nat. Neurosci. 15 (2012) 511–517. Crossref, Medline, Web of ScienceGoogle Scholar
    • 14. D. Poeppel, The neuroanatomic and neurophysiological infrastructure for speech and language, Curr. Opin. Neurobiol. 28 (2014) 142–149. Crossref, Medline, Web of ScienceGoogle Scholar
    • 15. E. Bullmore and O. Sporns, Complex brain networks: Graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci. 10 (2009) 186–198. Crossref, Medline, Web of ScienceGoogle Scholar
    • 16. M. Rubinov and O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, NeuroImage 52 (2010) 1059–1069. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. M. Graña and M. Silva, Impact of machine learning pipeline choices in autism prediction from functional connectivity data, Int. J. Neural Syst. 31 (2021) 2150009. Link, Web of ScienceGoogle Scholar
    • 18. N. Feng, F. Hu, H. Wang and B. Zhou, Motor intention decoding from the upper limb by graph convolutional network based on functional connectivity, Int. J. Neural Syst. 31 (2021) 2150047. Link, Web of ScienceGoogle Scholar
    • 19. M. A. Yaqub, K.-S. Hong, A. Zafar and C.-S. Kim, Control of transcranial direct current stimulation duration by assessing functional connectivity of near-infrared spectroscopy signals, Int. J. Neur. Syst. 32 (2022) 2150050. Link, Web of ScienceGoogle Scholar
    • 20. A. Zandbagleh, S. Mirzakuchaki, M. R. Daliri, P. Premkumar and S. Sanei, Classification of low and high schizotypy levels via evaluation of brain connectivity, Int. J. Neural Syst. 32 (2022) 2250013. Link, Web of ScienceGoogle Scholar
    • 21. M. Ahmadlou, H. Adeli and A. Adeli, Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder, J. Neurosci. Methods 211 (2012) 203–209. Crossref, Medline, Web of ScienceGoogle Scholar
    • 22. M. Ahmadlou, H. Adeli and A. Adeli, Spatiotemporal analysis of relative convergence of EEGs reveals differences between brain dynamics of depressive women and men, Clin. EEG Neurosci. 44 (2013) 175–181. Crossref, Medline, Web of ScienceGoogle Scholar
    • 23. M. Ahmadlou, A. Adeli, R. Bajo and H. Adeli, Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task, Clin. Neurophysiol. 125 (2014) 694–702. Crossref, Medline, Web of ScienceGoogle Scholar
    • 24. R. Yuvaraj, M. Murugappan, U. R. Acharya, H. Adeli, N. M. Ibrahim and E. Mesquita, Brain functional connectivity patterns for emotional state classification in Parkinson’s disease patients without dementia, Behav. Brain Res. 298 (2016) 248–260. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. M. Ahmadlou and H. Adeli, Complexity of weighted graph: A new technique to investigate structural complexity of brain activities with applications to aging and autism, Neurosci. Lett. 650 (2017) 103–108. Crossref, Medline, Web of ScienceGoogle Scholar
    • 26. J. delEtoile and H. Adeli, Graph theory and brain connectivity in Alzheimer’s disease, Neuroscientist 23 (2017) 616–626. Crossref, Medline, Web of ScienceGoogle Scholar
    • 27. M. Zhang, L. Riecke, G. Fraga-González and M. Bonte, Altered brain network topology during speech tracking in developmental dyslexia, NeuroImage 254 (2022) 119142. Crossref, Medline, Web of ScienceGoogle Scholar
    • 28. G. Fraga González, D. J. A. Smit, M. J. W. van der Molen, J. Tijms, C. J. Stam, E. J. C. de Geus and M. W. van der Molen, EEG resting state functional connectivity in adult dyslexics using phase lag index and graph analysis, Front. Hum. Neurosci. 12 (2018) 341. Crossref, Medline, Web of ScienceGoogle Scholar
    • 29. G. Fraga González, M. J. W. Van der Molen, G. Žarić, M. Bonte, J. Tijms, L. Blomert, C. J. Stam and M. W. Van der Molen, Graph analysis of EEG resting state functional networks in dyslexic readers, Clin. Neurophysiol. 127 (2016) 3165–3175. Crossref, Medline, Web of ScienceGoogle Scholar
    • 30. G. Fraga-González, D. J. A. Smit, M. J. W. Van der Molen, J. Tijms, C. J. Stam, E. J. C. de Geus and M. W. Van der Molen, Graph analysis of EEG functional connectivity networks during a letter-speech sound binding task in adult dyslexics, Front. Psychol. 12 (2021) 5344. Crossref, Web of ScienceGoogle Scholar
    • 31. T. Taskov and J. Dushanova, Functional connectivity in developmental dyslexia during speed discrimination, Symmetry 13 (2021) 749. Crossref, Web of ScienceGoogle Scholar
    • 32. K. Mandke, S. Flanagan, A. Macfarlane, F. Gabrielczyk, A. Wilson, J. Gross and U. Goswami, Neural sampling of the speech signal at different timescales by children with dyslexia, NeuroImage 253 (2022) 119077. Crossref, Medline, Web of ScienceGoogle Scholar
    • 33. E. S. Finn, X. Shen, J. M. Holahan, D. Scheinost, C. Lacadie, X. Papademetris, S. E. Shaywitz, B. A. Shaywitz and R. T. Constable, Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity, Biol. Psychiatry 76 (2014) 397–404. Crossref, Medline, Web of ScienceGoogle Scholar
    • 34. E. S. Edwards, K. Burke, J. R. Booth and C. McNorgan, Dyslexia on a continuum: A complex network approach, PLoS ONE 13 (2018) e0208923. Crossref, Medline, Web of ScienceGoogle Scholar
    • 35. N. J. Gallego-Molina, A. Ortiz, F. J. Martínez-Murcia, M. A. Formoso and A. Giménez, Complex network modeling of EEG band coupling in dyslexia: An exploratory analysis of auditory processing and diagnosis, Knowl.-Based Syst. 240 (2022) 108098. Crossref, Web of ScienceGoogle Scholar
    • 36. J. Wang, Q. Dong and H. Niu, The minimum resting-state fNIRS imaging duration for accurate and stable mapping of brain connectivity network in children, Sci. Rep. 7 (2017) 6461. Crossref, Medline, Web of ScienceGoogle Scholar
    • 37. J. Gervain, J. Mehler, J. F. Werker, C. A. Nelson, G. Csibra, S. Lloyd-Fox, M. Shukla and R. N. Aslin, Near-infrared spectroscopy: A report from the McDonnell infant methodology consortium, Dev. Cogn. Neurosci. 1 (2011) 22–46. Crossref, Medline, Web of ScienceGoogle Scholar
    • 38. T. Nguyen, O. Babawale, T. Kim, H. J. Jo, H. Liu and J. G. Kim, Exploring brain functional connectivity in rest and sleep states: A fNIRS study, Sci. Rep. 8 (2018) 16144. Crossref, Medline, Web of ScienceGoogle Scholar
    • 39. Z. Einalou, K. Maghooli, S. K. Setarehdan and A. Akin, Graph theoretical approach to functional connectivity in prefrontal cortex via fNIRS, Neurophotonics 4 (2017) 041407. Crossref, Medline, Web of ScienceGoogle Scholar
    • 40. K. K. Jasińska, L. Shuai, A. N. L. Lau, S. Frost, N. Landi and K. R. Pugh, Functional connectivity in the developing language network in 4-year-old children predicts future reading ability, Dev. Sci. 24(2) (2021) e13041. Crossref, Medline, Web of ScienceGoogle Scholar
    • 41. S. Cutini, D. Szűcs, N. Mead, M. Huss and U. Goswami, Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia, NeuroImage 143 (2016) 40–49. Crossref, Medline, Web of ScienceGoogle Scholar
    • 42. A. Ortiz, F. J. Martinez-Murcia, J. L. Luque, A. Giménez, R. Morales-Ortega and J. Ortega, Dyslexia diagnosis by EEG temporal and spectral descriptors: An anomaly detection approach, Int. J. Neur. Syst. 30 (2020) 2050029. Link, Web of ScienceGoogle Scholar
    • 43. A. De Vos, S. Vanvooren, J. Vanderauwera, P. Ghesquière and J. Wouters, A longitudinal study investigating neural processing of speech envelope modulation rates in children with (a family risk for) dyslexia, Cortex 93 (2017) 206–219. Crossref, Medline, Web of ScienceGoogle Scholar
    • 44. L. K. Butler, S. Kiran and H. Tager-Flusberg, Functional near-infrared spectroscopy in the study of speech and language impairment across the life span: A systematic review, Am. J. Speech Lang. Pathol. 29 (2020) 1674–1701. Crossref, Medline, Web of ScienceGoogle Scholar
    • 45. F. A. Fishburn, R. S. Ludlum, C. J. Vaidya and A. V. Medvedev, Temporal Derivative Distribution Repair (TDDR): A motion correction method for fNIRS, NeuroImage 184 (2019) 171–179. Crossref, Medline, Web of ScienceGoogle Scholar
    • 46. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray and J. Wyatt, Estimation of optical pathlength through tissue from direct time of flight measurement, Phys. Med. Biol. 33 (1988) 1433–1442. Crossref, Medline, Web of ScienceGoogle Scholar
    • 47. A. C. Whiteman, H. Santosa, D. F. Chen, S. Perlman and T. Huppert, Investigation of the sensitivity of functional near-infrared spectroscopy brain imaging to anatomical variations in 5- to 11-year-old children, Neurophotonics 5 (2018) 011009. Medline, Web of ScienceGoogle Scholar
    • 48. Y. Zhao, L. Qiu, Y. Sun, C. Huang and T. Li, Optimal hemoglobin extinction coefficient data set for near-infrared spectroscopy, Biomed. Opt. Express 8 (2017) 5151–5159. Crossref, Medline, Web of ScienceGoogle Scholar
    • 49. N. Kollias and W. Gratzer, Tabulated molar extinction coefficient for hemoglobin in water, Wellman Laboratories, Harvard Medical School, Boston 5 (1999) 150–161. Google Scholar
    • 50. J. Steinbrink, A. Villringer, F. Kempf, D. Haux, S. Boden and H. Obrig, Illuminating the BOLD signal: Combined fMRI–fNIRS studies, Magn. Reson. Imaging 24 (2006) 495–505. Crossref, Medline, Web of ScienceGoogle Scholar
    • 51. A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen and M. Hämäläinen, MEG and EEG data analysis with MNE-Python, Front. Neurosci. 7 (2013) 267. Crossref, Medline, Web of ScienceGoogle Scholar
    • 52. R. Luke, E. D. Larson, M. J. Shader, H. Innes-Brown, L. V. Yper, A. K. C. Lee, P. F. Sowman and D. McAlpine, Analysis methods for measuring passive auditory fNIRS responses generated by a block-design paradigm, Neurophotonics 8 (2021) 025008. Crossref, Medline, Web of ScienceGoogle Scholar
    • 53. T. Schreiber and A. Schmitz, Surrogate time series, Physica D 142 (2000) 346–382. Crossref, Web of ScienceGoogle Scholar
    • 54. J. M. Hurtado, L. L. Rubchinsky and K. A. Sigvardt, Statistical method for detection of phase-locking episodes in neural oscillations, J. Neurophysiol. 91 (2004) 1883–1898. Crossref, Medline, Web of ScienceGoogle Scholar
    • 55. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424 (2006) 175–308. Crossref, Web of ScienceGoogle Scholar
    • 56. M. E. J. Newman, The structure and function of complex networks, SIAM Rev. 45 (2003) 167–256. Crossref, Web of ScienceGoogle Scholar
    • 57. D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393 (1998) 440–442. Crossref, Medline, Web of ScienceGoogle Scholar
    • 58. L.-D. Lord, A. B. Stevner, G. Deco and M. L. Kringelbach, Understanding principles of integration and segregation using whole-brain computational connectomics: Implications for neuropsychiatric disorders, Philos. Trans. R. Soc. A 375 (2017) 20160283. Crossref, Medline, Web of ScienceGoogle Scholar
    • 59. V. Latora and M. Marchiori, Efficient behavior of small-world networks, Phys. Rev. Lett. 87 (2001) 198701. Crossref, Medline, Web of ScienceGoogle Scholar
    • 60. S. Achard and E. Bullmore, Efficiency and cost of economical brain functional networks, PLOS Comput. Biol. 3 (2007) e17. Crossref, Medline, Web of ScienceGoogle Scholar
    • 61. O. Sporns and C. J. Honey, Small worlds inside big brains, Proc. Natl. Acad. Sci. 103 (2006) 19219–19220. Crossref, Medline, Web of ScienceGoogle Scholar
    • 62. M. D. Humphries and K. Gurney, Network ‘Small-World-Ness’: A quantitative method for determining canonical network equivalence, PLoS ONE 3 (2008) e0002051. Crossref, Medline, Web of ScienceGoogle Scholar
    • 63. L. C. Freeman, Centrality in social networks conceptual clarification, Soc. Netw. 1 (1978) 215–239. Crossref, Web of ScienceGoogle Scholar
    • 64. M. E. J. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89 (2002) 208701. Crossref, Medline, Web of ScienceGoogle Scholar
    • 65. R. Pastor-Satorras, A. Vázquez and A. Vespignani, Dynamical and correlation properties of the internet, Phys. Rev. Lett. 87 (2001) 258701. Crossref, Medline, Web of ScienceGoogle Scholar
    • 66. V. N. Vapnik, Statistical Learning Theory (John Wiley & Sons, New York, 1998). Google Scholar
    • 67. S. Maslov and K. Sneppen, Specificity and stability in topology of protein networks, Science 296 (2002) 910–913. Crossref, Medline, Web of ScienceGoogle Scholar
    • 68. K. Lehongre, B. Morillon, A.-L. Giraud and F. Ramus, Impaired auditory sampling in dyslexia: Further evidence from combined fMRI and EEG, Front. Hum. Neurosci. 7 (2013) 454. Crossref, Medline, Web of ScienceGoogle Scholar
    • 69. A. J. Power, N. Mead, L. Barnes and U. Goswami, Neural entrainment to rhythmic speech in children with developmental dyslexia, Front. Hum. Neurosci. 7 (2013) 777. Crossref, Medline, Web of ScienceGoogle Scholar
    • 70. L. Cai, Q. Dong and H. Niu, The development of functional network organization in early childhood and early adolescence: A resting-state fNIRS study, Dev. Cogn. Neurosci. 30 (2018) 223–235. Crossref, Medline, Web of ScienceGoogle Scholar
    • 71. H. Niu, J. Wang, T. Zhao, N. Shu and Y. He, Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy, PLoS ONE 7 (2012) e45771. Crossref, Medline, Web of ScienceGoogle Scholar
    • 72. H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao and Y. He, Test-retest reliability of graph metrics in functional brain networks: A resting-state fNIRS study, PLoS ONE 8 (2013) e72425. Crossref, Medline, Web of ScienceGoogle Scholar
    • 73. M. L. Schroeter, T. Kupka, T. Mildner, K. Uludağ and D. Y. von Cramon, Investigating the post-stimulus undershoot of the BOLD signal — A simultaneous fMRI and fNIRS study, NeuroImage 30 (2006) 349–358. Crossref, Medline, Web of ScienceGoogle Scholar
    • 74. S. Wijeakumar, T. J. Huppert, V. A. Magnotta, A. T. Buss and J. P. Spencer, Validating an image-based fNIRS approach with fMRI and a working memory task, NeuroImage 147 (2017) 204–218. Crossref, Medline, Web of ScienceGoogle Scholar
    • 75. L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge and D. A. Boas, Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements, NeuroImage 59 (2012) 3933–3940. Crossref, Medline, Web of ScienceGoogle Scholar
    • 76. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar and J. P. Culver, Resting-state functional connectivity in the human brain revealed with diffuse optical tomography, NeuroImage 47 (2009) 148–156. Crossref, Medline, Web of ScienceGoogle Scholar
    • 77. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs and I. Tachtsidis, The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy, NeuroImage 61 (2012) 70–81. Crossref, Medline, Web of ScienceGoogle Scholar
    • 78. W.-L. Chen, J. Wagner, N. Heugel, J. Sugar, Y.-W. Lee, L. Conant, M. Malloy, J. Heffernan, B. Quirk, A. Zinos, S. A. Beardsley, R. Prost and H. T. Whelan, Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: Advances and future directions, Front. Neurosci. 14 (2020) 724. Crossref, Medline, Web of ScienceGoogle Scholar
    • 79. T. Nguyen, M. Kim, J. Gwak, J. J. Lee, K. Y. Choi, K. H. Lee and J. G. Kim, Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (fNIRS) study, J. Biophotonics 12(9) (2019) e201800298. Crossref, Medline, Web of ScienceGoogle Scholar