World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Separating Inhibitory and Excitatory Responses of Epileptic Brain to Single-Pulse Electrical Stimulation

https://doi.org/10.1142/S0129065723500089Cited by:2 (Source: Crossref)

To enable an accurate recognition of neuronal excitability in an epileptic brain for modeling or localization of epileptic zone, here the brain response to single-pulse electrical stimulation (SPES) has been decomposed into its constituent components using adaptive singular spectrum analysis (SSA). Given the response at neuronal level, these components are expected to be the inhibitory and excitatory components. The prime objective is to thoroughly investigate the nature of delayed responses (elicited between 100ms–1 s after SPES) for localization of the epileptic zone. SSA is a powerful subspace signal analysis method for separation of single channel signals into their constituent uncorrelated components. The consistency in the results for both early and delayed brain responses verifies the usability of the approach.

References

  • 1. C. Behr, M. Goltzene, G. Kosmalski, E. Hirsch and P. Ryvlin, Epidemiology of epilepsy, Rev. Neurol. 172(1) (2016) 27–36. Crossref, Medline, Web of ScienceGoogle Scholar
  • 2. L. Forsgren, E. Beghi, A. Oun and M. Sillanpää, The epidemiology of epilepsy in Europe—A systematic review, Eur. J. Neurol. 12(4) (2005) 245–253. Crossref, Medline, Web of ScienceGoogle Scholar
  • 3. U. R. Acharya, S. V. Sree, G. Swapna, R. J. Martis and J. S. Suri, Automated EEG analysis of epilepsy: A review, Knowl.-Based Syst. 45 (2013) 147–165. Crossref, Web of ScienceGoogle Scholar
  • 4. G. Alarcón, J. Martinez, S. V. Kerai, M. E. Lacruz, R. Q. Quiroga, R. P. Selway, M. P. Richardson, J. J. G. Seoane and A. Valentín, In vivo neuronal firing patterns during human epileptiform discharges replicated by electrical stimulation, Clin. Neurophysiol. 123(9) (2012) 1736–1744. Crossref, Medline, Web of ScienceGoogle Scholar
  • 5. B. Abdi-Sargezeh, A. Valentin, G. Alarcon and S. Sanei, Incorporating uncertainty in data labeling into automatic detection of interictal epileptiform discharges from concurrent scalp-EEG via multi-way analysis, Int. J. Neural Syst. 31(08) (2021) 2150019. Link, Web of ScienceGoogle Scholar
  • 6. H. S. Nogay and H. Adeli, Detection of epileptic seizure using pretrained deep convolutional neural network and transfer learning, Eur. Neurol. 83(6) (2020) 602–614. Crossref, Medline, Web of ScienceGoogle Scholar
  • 7. A. Bhattacharya, T. Baweja and S. Karri, Epileptic seizure prediction using deep transformer model, Int. J. Neural Syst. 32(02) (2022) 2150058. Link, Web of ScienceGoogle Scholar
  • 8. A. Olamat, P. Ozel and A. Akan, Synchronization analysis in epileptic EEG signals via state transfer networks based on visibility graph technique, Int. J. Neural Syst. 32(02) (2022) 2150041. Link, Web of ScienceGoogle Scholar
  • 9. H. Bruining et al., Measurement of excitation-inhibition ratio in autism spectrum disorder using critical brain dynamics, Sci. Rep. 10(1) (2020) 1–15. Crossref, Medline, Web of ScienceGoogle Scholar
  • 10. O. Kinouchi and M. Copelli, Optimal dynamical range of excitable networks at criticality, Nat. Phys. 2(5) (2006) 348–351. Crossref, Web of ScienceGoogle Scholar
  • 11. G. G. Turrigiano and S. B. Nelson, Homeostatic plasticity in the developing nervous system, Nat. Rev. Neurosci. 5(2) (2004) 97–107. Crossref, Medline, Web of ScienceGoogle Scholar
  • 12. K. Staley, Molecular mechanisms of epilepsy, Nat. Neurosci. 18(3) (2015) 367–372. Crossref, Medline, Web of ScienceGoogle Scholar
  • 13. L.-R. Shao, C. W. Habela and C. E. Stafstrom, Pediatric epilepsy mechanisms: Expanding the paradigm of excitation/inhibition imbalance, Children 6(2) (2019) 23. Crossref, MedlineGoogle Scholar
  • 14. A. Valentín, G. Alarcón, M. Honavar, J. J. G. Seoane, R. P. Selway, C. E. Polkey and C. D. Binnie, Single pulse electrical stimulation for identification of structural abnormalities and prediction of seizure outcome after epilepsy surgery: A prospective study, Lancet Neurol. 4(11) (2005) 718–726. Crossref, Medline, Web of ScienceGoogle Scholar
  • 15. G. Alarcón, D. Jiménez-Jiménez, A. Valentín and D. Martín-López, Characterizing EEG cortical dynamics and connectivity with responses to single pulse electrical stimulation (SPES), Int. J. Neural Syst. 28(06) (2018) 1750057. Link, Web of ScienceGoogle Scholar
  • 16. D. Flanagan, A. Valentín, J. J. García Seoane, G. Alarcón and S. G. Boyd, Single-pulse electrical stimulation helps to identify epileptogenic cortex in children, Epilepsia 50(7) (2009) 1793–1803. Crossref, Medline, Web of ScienceGoogle Scholar
  • 17. A. Valentin, M. Anderson, G. Alarcon, J. G. Seoane, R. Selway, C. Binnie and C. Polkey, Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo, Brain 125(8) (2002) 1709–1718. Crossref, Medline, Web of ScienceGoogle Scholar
  • 18. A. Valentin, G. Alarcon, J. J. Garcia-Seoane, M. Lacruz, S. Nayak, M. Honavar, R. P. Selway, C. Binnie and C. Polkey, Single-pulse electrical stimulation identifies epileptogenic frontal cortex in the human brain, Neurology 65(3) (2005) 426–435. Crossref, Medline, Web of ScienceGoogle Scholar
  • 19. J. Engel, Surgical Treatment of the Epilepsies (Raven Press, 1987). Google Scholar
  • 20. V. Kokkinos, G. Alarcón, R. P. Selway and A. Valentín, Role of single pulse electrical stimulation (SPES) to guide electrode implantation under general anaesthesia in presurgical assessment of epilepsy, Seizure 22(3) (2013) 198–204. Crossref, Medline, Web of ScienceGoogle Scholar
  • 21. J. Engel, Update on surgical treatment of the epilepsies: Summary of the second international palm desert conference on the surgical treatment of the epilepsies (1992), Neurology 43(8) (1993) 1612–1612. Crossref, Medline, Web of ScienceGoogle Scholar
  • 22. J. B. Elsner and A. A. Tsonis, Singular Spectrum Analysis: A New Tool in Time Series Analysis (Springer Science and Business Media, 1996). CrossrefGoogle Scholar
  • 23. S. Sanei and H. Hassani, Singular Spectrum Analysis of Biomedical Signals (CRC Press, 2015). CrossrefGoogle Scholar
  • 24. S. Sanei, T. K. Lee and V. Abolghasemi, A new adaptive line enhancer based on singular spectrum analysis, IEEE Trans. Biomed. Eng. 59(2) (2011) 428–434. Crossref, Medline, Web of ScienceGoogle Scholar
  • 25. F. Ghaderi, H. R. Mohseni and S. Sanei, Localizing heart sounds in respiratory signals using singular spectrum analysis, IEEE Trans. Biomed. Eng. 58(12) (2011) 3360–3367. Crossref, Medline, Web of ScienceGoogle Scholar
  • 26. S. Kouchaki, S. Sanei, E. L. Arbon and D.-J. Dijk, Tensor based singular spectrum analysis for automatic scoring of sleep EEG, IEEE Trans. Neural Syst. Rehabil. Eng. 23(1) (2014) 1–9. Crossref, Medline, Web of ScienceGoogle Scholar
  • 27. S. Sanei, M. Ghodsi and H. Hassani, An adaptive singular spectrum analysis approach to murmur detection from heart sounds, Med. Eng. Phys. 33(3) (2011) 362–367. Crossref, Medline, Web of ScienceGoogle Scholar
  • 28. M. Ghil and N. Jiang, Recent forecast skill for the el nino/southern oscillation, Geophys. Res. Lett. 25(2) (1998) 171–174. Crossref, Web of ScienceGoogle Scholar
  • 29. K. Patterson, H. Hassani, S. Heravi and A. Zhigljavsky, Multivariate singular spectrum analysis for forecasting revisions to real-time data, J. Appl. Stat. 38(10) (2011) 2183–2211. Crossref, Web of ScienceGoogle Scholar
  • 30. A. Olenko, K. T. Wong, H. Mir and H. Al-Nashash, Generalised correlation index for quantifying signal morphological similarity, Electron. Lett. 52 (22) (2016) 1832–1834. Crossref, Web of ScienceGoogle Scholar
  • 31. D. Nayak, A. Valentín, R. P. Selway and G. Alarcón, Can single pulse electrical stimulation provoke responses similar to spontaneous interictal epileptiform discharges? Clin. Neurophysiol. 125(7) (2014) 1306–1311. Crossref, Medline, Web of ScienceGoogle Scholar
  • 32. A. C. Paulk et al., Local and distant cortical responses to single pulse intracranial stimulation in the human brain are differentially modulated by specific stimulation parameters, Brain Stimul. 15(2) (2022) 491–508. Crossref, Medline, Web of ScienceGoogle Scholar
Remember to check out the Most Cited Articles!

Check out our titles in neural networks today!