World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Automated Interictal Epileptiform Discharge Detection from Scalp EEG Using Scalable Time-series Classification Approaches by:2 (Source: Crossref)

    Deep learning for automated interictal epileptiform discharge (IED) detection has been topical with many published papers in recent years. All existing works viewed EEG signals as time-series and developed specific models for IED classification; however, general time-series classification (TSC) methods were not considered. Moreover, none of these methods were evaluated on any public datasets, making direct comparisons challenging. This paper explored two state-of-the-art convolutional-based TSC algorithms, InceptionTime and Minirocket, on IED detection. We fine-tuned and cross-evaluated them on a public (Temple University Events — TUEV) and two private datasets and provided ready metrics for benchmarking future work. We observed that the optimal parameters correlated with the clinical duration of an IED and achieved the best area under precision-recall curve (AUPRC) of 0.98 and F1 of 0.80 on the private datasets, respectively. The AUPRC and F1 on the TUEV dataset were 0.99 and 0.97, respectively. While algorithms trained on the private sets maintained their performance when tested on the TUEV data, those trained on TUEV could not generalize well to the private data. These results emerge from differences in the class distributions across datasets and indicate a need for public datasets with a better diversity of IED waveforms, background activities and artifacts to facilitate standardization and benchmarking of algorithms.


    • 1. L. V. MarCuse, M. C. Fields and J. J. Yoo , Rowan’s Primer of EEG, 2nd edn. (Elsevier, 2016). Google Scholar
    • 2. D. Nhu, M. Janmohamed, L. Shakhatreh, O. Gonen, P. Kwan, A. Gilligan, C. Wei Tan and L. Kuhlmann , Automated interictal epileptiform discharge detection from routine EEG, in Healthier Lives, Digitally Enabled, Vol. 276 (IOS Press, 2021), pp. 65–71. CrossrefGoogle Scholar
    • 3. D. Nhu, M. Janmohamed, P. Perucca, A. Gilligan, P. Kwan, T. O’Brien, C. W. Tan and L. Kuhlmann , Graph convolutional network for generalized epileptiform abnormality detection on EEG, 2021 IEEE Signal Processing in Medicine and Biology Symp. (SPMB) (Philadelphia, Pennsylvania, New York, USA, 2021), pp. 1–6. CrossrefGoogle Scholar
    • 4. J. Jing, H. Sun, J. A. Kim, A. Herlopian, I. Karakis, M. Ng, J. J. Halford, D. Maus, F. Chan, M. Dolatshahi, C. Muniz, C. Chu, V. Sacca, J. Pathmanathan, W. Ge, J. Dauwels, A. Lam, A. J. Cole, S. S. Cash and M. B. Westover , Development of expert-level automated detection of epileptiform discharges during electroencephalogram interpretation, JAMA Neurol. 77 (2020) 103–108. Crossref, Medline, Web of ScienceGoogle Scholar
    • 5. J. Thomas, P. Thangavel, W. Y. Peh, J. Jing, R. Yuvaraj, S. S. Cash, R. Chaudhari, S. Karia, R. Rathakrishnan, V. Saini, N. Shah, R. Srivastava, Y.-L. Tan, B. Westover and J. Dauwels , Automated adult epilepsy diagnostic tool based on interictal scalp electroencephalogram characteristics: A six-center study, Int. J. Neural Syst. 31 (2021) 2050074. Link, Web of ScienceGoogle Scholar
    • 6. C. da Silva Loureno, M. Tjepkema-Cloostermans and M. van Putten , Machine learning for detection of interictal epileptiform discharges, Clin. Neurophysiol. 132(7) (2021) 1433–1443. Crossref, Medline, Web of ScienceGoogle Scholar
    • 7. H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanamahatana and E. Keogh , The UCR time series archive, IEEE/CAA J. Autom. Sin. 6 (2019) 1293–1305. Crossref, Web of ScienceGoogle Scholar
    • 8. M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom and A. Bagnall , HIVE-COTE 2.0: A new meta ensemble for time series classification, Mach. Learn. 110 (2021) 3211–3243. Crossref, Web of ScienceGoogle Scholar
    • 9. J. Thomas, J. Jin, P. Thangavel, E. Bagheri, R. Yuvaraj, J. Dauwels, R. Rathakrishnan, J. J. Halford, S. S. Cash and B. Westover , Automated detection of interictal epileptiform discharges from scalp electroencephalograms by convolutional neural networks, Int. J. Neural Syst. 30 (2020) 17. Link, Web of ScienceGoogle Scholar
    • 10. H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, J. Weber, G. I. Webb, L. Idoumghar, P.-A. Muller and F. Petitjean , InceptionTime: Finding AlexNet for time series classification, Data Min. Knowl. Discov. 34 (2020) 1936–1962. Crossref, Web of ScienceGoogle Scholar
    • 11. A. Dempster, D. F. Schmidt and G. I. Webb , MiniRocket: A very fast (almost) deterministic transform for time series classification, in Proc. 27th ACM SIGKDD Conf. Knowledge Discovery & Data Mining, KDD ’21 (Association for Computing Machinery, New York, NY, USA, 2021), pp. 248–257. CrossrefGoogle Scholar
    • 12. T. Prasanth, J. Thomas, R. Yuvaraj, J. Jing, S. S. Cash, R. Chaudhari, T. Y. Leng, R. Rathakrishnan, S. Rohit, V. Saini, B. M. Westover and J. Dauwels , Deep learning for interictal epileptiform spike detection from scalp EEG frequency sub bands, in 2020 42nd Annual Int. Conf. IEEE Engineering in Medicine & Biology Society (EMBC) (New York, 2020), pp. 3703–3706. CrossrefGoogle Scholar
    • 13. A. Harati, M. Golmohammadi, S. Lopez, I. Obeid and J. Picone , Improved EEG event classification using differential energy, in 2015 IEEE Signal Processing in Medicine and Biology Symp. (SPMB) (IEEE, 2015), pp. 1–4. CrossrefGoogle Scholar
    • 14. I. Obeid and J. Picone , The temple university hospital EEG data corpus, Front. Neurosci. 10 (2016) 196. Crossref, Medline, Web of ScienceGoogle Scholar
    • 15. M. Golmohammadi , Automatic analysis of EEGs using big data and hybrid deep learning architectures, Front. Hum. Neurosci. 13 (2019) 76. Crossref, Medline, Web of ScienceGoogle Scholar
    • 16. N. Sabor, Y. Li, Z. Zhang, Y. Pu, G. Wang and Y. Lian , Detection of the interictal epileptic discharges based on wavelet bispectrum interaction and recurrent neural network, Sci. China Inf. Sci. 64 (2021) 162403. CrossrefGoogle Scholar
    • 17. M. Middlehurst, W. Vickers and A. Bagnall , Scalable dictionary classifiers for time series classification, in Intelligent Data Engineering and Automated Learning — IDEAL 2019, eds. H. YinD. CamachoP. TinoA. J. Talln-BallesterosR. MenezesR. Allmendinger. Lecture Notes in Computer Science (Springer International Publishing, Cham, 2019), pp. 11–19. CrossrefGoogle Scholar
    • 18. M. Middlehurst, J. Large and A. Bagnall , The canonical interval forest (CIF) classifier for time series classification, in 2020 IEEE Int. Conf. Big Data (Big Data) (IEEE, 2020), pp. 188–195. CrossrefGoogle Scholar
    • 19. A. Shifaz, C. Pelletier, F. Petitjean and G. I. Webb , TS-CHIEF: A scalable and accurate forest algorithm for time series classification, Data Min. Knowl. Discov. 34 (2020) 742–775. Crossref, Web of ScienceGoogle Scholar
    • 20. A. Dempster, F. Petitjean and G. I. Webb , ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels, Data Min. Knowl. Discov. 34 (2020) 1454–1495. Crossref, Web of ScienceGoogle Scholar
    • 21. A. T. , M. G. , D. G. , E. C. , L. Astrakas, S. Konitsiotis and M. Tzaphlidou , Automated epileptic seizure detection methods: A review study, in Epilepsy — Histological, Electroencephalographic and Psychological Aspects, ed. D. Stevanovic (InTech, 2012), pp. 2027–2036. Google Scholar
    • 22. F. E. Abd El-Samie, T. N. Alotaiby, M. I. Khalid, S. A. Alshebeili and S. A. Aldosari , A review of EEG and MEG epileptic spike detection algorithms, IEEE Access 6 (2018) 60673–60688. Crossref, Web of ScienceGoogle Scholar
    • 23. Y. LeCun, Y. Bengio and G. Hinton , Deep learning, Nature 521 (2015) 436–444. Crossref, Medline, Web of ScienceGoogle Scholar
    • 24. A. Shoeibi, M. Khodatars, N. Ghassemi, M. Jafari, P. Moridian, R. Alizadehsani, M. Panahiazar, F. Khozeimeh, A. Zare, H. Hosseini-Nejad, A. Khosravi, A. F. Atiya, D. Aminshahidi, S. Hussain, M. Rouhani, S. Nahavandi and U. R. Acharya , Epileptic seizures detection using deep learning techniques: A review, Int. J. Environ. Res. Public Health 18 (2021) 5780. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk and J. Faubert , Deep learning-based electroencephalography analysis: A systematic review, J. Neural Eng. 16 (2019) 051001. Crossref, Medline, Web of ScienceGoogle Scholar
    • 26. U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan and H. Adeli , Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals, Comput. Biol. Med. 100 (2018) 270–278. Crossref, Medline, Web of ScienceGoogle Scholar
    • 27. K. Fukumori , Fully data-driven convolutional filters with deep learning models for epileptic spike detection, in ICASSP, IEEE Int. Conf. Acoustics, Speech and Signal Processing — Proc. (IEEE, 2019), pp. 2772–2776. CrossrefGoogle Scholar
    • 28. Z. Xu, T. Wang, J. Cao, Z. Bao, T. Jiang and F. Gao , BECT spike detection based on novel EEG sequence features and LSTM algorithms, IEEE Trans. Neural Syst. Rehabilitation Eng. 29 (2021) 1734–1743. Crossref, Medline, Web of ScienceGoogle Scholar
    • 29. K. Fukumori, N. Yoshida, H. Sugano, M. Nakajima and T. Tanaka , Epileptic spike detection using neural networks with linear-phase convolutions, IEEE J. Biomed. Health Inform. 26 (2022) 1045–1056. Crossref, Medline, Web of ScienceGoogle Scholar
    • 30. S. Clarke , Computer-assisted EEG diagnostic review for idiopathic generalized epilepsy, Epilepsy Behav. 121 (2019) 106556. Crossref, Medline, Web of ScienceGoogle Scholar
    • 31. P. Gelisse, A. Crespel, P. Genton, P. Jallon and P. W. Kaplan , Lateralized periodic discharges: Which patterns are interictal, ictal, or peri-ictal? Clin. Neurophysiol. 132 (2021) 1593–1603. Crossref, Medline, Web of ScienceGoogle Scholar
    • 32. R. D’Agostino and E. S. Pearson , Tests for departure from normality. Empirical results for the distributions of b2 and b1, Biometrika 60(3) (1973) 613–622. Web of ScienceGoogle Scholar
    • 33. H. Zhang, M. Cisse, Y. N. Dauphin and D. Lopez-Paz , mixup: Beyond Empirical Risk Minimization, in Int. Conf. Learning Representations (OpenReview, Vancouver, Canada, 2018). Google Scholar
    • 34. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna , Rethinking the inception architecture for computer vision, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (Las Vegas, New York, USA, 2016). CrossrefGoogle Scholar
    • 35. C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi , Inception-v4, inception-ResNet and the impact of residual connections on learning, in Proc. 31st AAAI Conf. Artificial Intelligence, AAAI’17 (AAAI Press, San Francisco, CA, USA, 2017), pp. 4278–4284. CrossrefGoogle Scholar
    • 36. J. Tompson, R. Goroshin, A. Jain, Y. LeCun and C. Bregler , Efficient object localization using convolutional networks, in 2015 IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Boston, MA, USA, 2015), pp. 648–656. CrossrefGoogle Scholar
    • 37. D. San juan Orta, K. H. Chiappa, A. Z. Quiroz, D. J. Costello and A. J. Cole , Prognostic implications of periodic epileptiform discharges, Arch. Neurol. 66 (2009) 985–991. Crossref, MedlineGoogle Scholar
    • 38. T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollar , focal loss for dense object detection, in Proc. IEEE Int. Conf. Computer Vision (ICCV) (Venice, Italy, New York, 2017). CrossrefGoogle Scholar
    • 39. A. He, C. Luo, X. Tian and W. Zeng , A twofold siamese network for real-time object tracking, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (New York, 2018), pp. 4834–4843. CrossrefGoogle Scholar
    • 40. I. Loshchilov and F. Hutter , Decoupled weight decay regularization, in Int. Conf. Learning Representations (OpenReview, Vancouver, Canada, 2018). Google Scholar
    • 41. L. N. Smith , Cyclical learning rates for training neural networks, in 2017 IEEE Winter Conf. Applications of Computer Vision (WACV) (IEEE, 2017), pp. 464–472. CrossrefGoogle Scholar
    • 42. P. Boonyakitanont, A. Lek-uthai, K. Chomtho and J. Songsiri , A review of feature extraction and performance evaluation in epileptic seizure detection using EEG, Biomed. Signal Process. Control 57 (2020) 101702. Crossref, Web of ScienceGoogle Scholar
    • 43. L. Tarassenko, Y. U. Khan and M. R. G. Holt , Identification of interictal spikes in the EEG using neural network analysis, IEE Proc. Sci. Meas. Technol. 145 (1998) 270–278. Google Scholar
    • 44. H. Nolan, R. Whelan and R. B. Reilly , FASTER: Fully automated statistical thresholding for EEG artifact rejection, J. Neurosci. Methods 192 (2010) 152–162. Crossref, Medline, Web of ScienceGoogle Scholar
    • 45. B. Qian and K. Rasheed , Hurst exponent and financial market predictability, in IASTED Conf. Financial Engineering and Applications (ACTA Press, Calgary, Canada, 2004), pp. 203–209. Google Scholar
    • 46. Y. N. Pan, J. Chen and X. L. Li , Spectral entropy: A complementary index for rolling element bearing performance degradation assessment, Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci. 223 (2009) 1223–1231. CrossrefGoogle Scholar
    • 47. M. Löning, A. Bagnall, S. Ganesh and V. Kazakov, sktime: A Unified Interface for Machine Learning with Time Series (2019), p. 10. Google Scholar
    • 48. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Man, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vigas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu and X. Zheng, TensorFlow: large-scale machine learning on heterogeneous systems (2016), Google Scholar
    • 49. B. L. Welch , The generalization of ‘Student’s’ problem when several different population variances are involved, Biometrika 34(1/2) (1947) 28–35. Crossref, Medline, Web of ScienceGoogle Scholar
    • 50. T. J. VanderWeele and M. B. Mathur , Some desirable properties of the bonferroni correction: Is the bonferroni correction really so bad? Am. J. Epidemiol. 188 (2019) 617–618. Crossref, Medline, Web of ScienceGoogle Scholar
    • 51. F. Schroff, D. Kalenichenko and J. Philbin , FaceNet: a unified embedding for face recognition and clustering, in 2015 IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (Boston, New York, USA, 2015), pp. 815–823. CrossrefGoogle Scholar
    • 52. G. Buckwalter, S. Chhin, S. Rahman, I. Obeid and J. Picone , Recent advances in the TUH EEG corpus: improving the interrater agreement for artifacts and epileptiform events, in 2021 IEEE Signal Processing in Medicine and Biology Symp. (SPMB) (Philadelphia, Pennsylvania, USA, 2021), pp. 1–3, ISSN: 2473-716X. CrossrefGoogle Scholar
    • 53. J. Huang, A. Gretton, K. Borgwardt, B. Schlkopf and A. Smola , Correcting sample selection bias by unlabeled data, in Advances in Neural Information Processing Systems, 19 (MIT Press, 2006). Google Scholar
    • 54. L. Torrey and J. Shavlik , Transfer learning, Handbook of Research on Machine Learning Applications (IGI Global, 2009), pp. 242–264. Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!