World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Convolutional Neural Networks-Based Framework for Early Identification of Dementia Using MRI of Brain Asymmetry

    https://doi.org/10.1142/S0129065722500538Cited by:11 (Source: Crossref)

    Computer-aided diagnosis of health problems and pathological conditions has become a substantial part of medical, biomedical, and computer science research. This paper focuses on the diagnosis of early and progressive dementia, building on the potential of deep learning (DL) models. The proposed computational framework exploits a magnetic resonance imaging (MRI) brain asymmetry biomarker, which has been associated with early dementia, and employs DL architectures for MRI image classification. Identification of early dementia is accomplished by an eight-layered convolutional neural network (CNN) as well as transfer learning of pretrained CNNs from ImageNet. Different instantiations of the proposed CNN architecture are tested. These are equipped with Softmax, support vector machine (SVM), linear discriminant (LD), or k -nearest neighbor (KNN) classification layers, assembled as a separate classification module, which are attached to the core CNN architecture. The initial imaging data were obtained from the MRI directory of the Alzheimer’s disease neuroimaging initiative 3 (ADNI3) database. The independent testing dataset was created using image preprocessing and segmentation algorithms applied to unseen patients’ imaging data. The proposed approach demonstrates a 90.12% accuracy in distinguishing patients who are cognitively normal subjects from those who have Alzheimer’s disease (AD), and an 86.40% accuracy in detecting early mild cognitive impairment (EMCI).

    References

    • 1. Z. Zhang, Y. Xie, F. Xing, M. McGough and L. Yang , Mdnet: A semantically and visually interpretable medical image diagnosis network, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE, Honolulu, Hawaii, USA, 2017), pp. 6428–6436. CrossrefGoogle Scholar
    • 2. A. Segato, A. Marzullo, F. Calimeri and E. de Momi , Artificial intelligence for brain diseases: A systematic review, APL Bioeng. 4(4) (2020) 041503. Crossref, Medline, Web of ScienceGoogle Scholar
    • 3. M. Janelidze and N. Botchorishvili , Mild cognitive impairment, in Alzheimer’s Disease: The 21st Century Challenge, Vol. 91 (IntechOpen, London, 2018). CrossrefGoogle Scholar
    • 4. C. Yang, S. Zhong, X. Zhou, L. Wei, L. Wang and S. Nie , The abnormality of topo-logical asymmetry between hemispheric brain white matter networks in Alzheimer’s disease and mild cognitive impairment, Front. Aging Neurosci. 9 (2017) 261. Crossref, Medline, Web of ScienceGoogle Scholar
    • 5. H. Liu, L. Zhang, Q. Xi, X. Zhao, F. Wang, X. Wang, W. Men and Q. Lin , Changes in brain lateralization in patients with mild cognitive impairment and Alzheimer’s disease: A resting-state functional magnetic resonance study from Alzheimer’s disease neuroimaging initiative, Front. Neurol. 9 (2018) 3. Crossref, Medline, Web of ScienceGoogle Scholar
    • 6. N. J. Herzog and G. D. Magoulas , Brain asymmetry detection and machine learning classification for diagnosis of early dementia, Sensors 21(3) (2021) 778. Crossref, Web of ScienceGoogle Scholar
    • 7. N. J. Herzog and G. D. Magoulas , Deep learning of brain asymmetry images and transfer learning for early diagnosis of dementia, in Int. Conf. Engineering Applications of Neural Networks (Springer, Cham, June 2021), pp. 57–70. Google Scholar
    • 8. A. S. Lundervold and A. Lundervold , An overview of deep learning in medical imaging focusing on MRI, Z. Med. Phys. 29(2) (2019) 102–127. Crossref, Medline, Web of ScienceGoogle Scholar
    • 9. N. Yamanakkanavar, J. Y. Choi and B. Lee , MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: A survey, Sensors 20(11) (2020) 3243. Crossref, Web of ScienceGoogle Scholar
    • 10. M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, B. C. Van Esesn, A. A. S. Awwal and V. K. Asari, The history began from alexnet: A comprehensive survey on deep learning approaches, (2018), arXiv:1803.01164. Google Scholar
    • 11. Y. Tang, Deep learning using linear support vector machines, (2013) arXiv:1306.0239. Google Scholar
    • 12. N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway and J. Liang , Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imaging 35(5) (2016) 1299–1312. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. R. Yamashita, M. Nishio, R. K. G. Do and K. Togashi , Convolutional neural networks: An overview and application in radiology, Insights Imaging, 9(4) (2018) 611–629. Crossref, Medline, Web of ScienceGoogle Scholar
    • 14. L. Heising and S. Angelopoulos , Early diagnosis of mild cognitive impairment with 2-dimensional convolutional neural network classification of magnetic resonance images, in Proc. 54th Hawaii Int. Conf. System Sciences, Hawaii, United States, 5–8 January 2021, p. 3407. Google Scholar
    • 15. D. Stamate, R. Smith, R. Tsygancov, R. Vorobev, J. Langham, D. Stahl and D. Reeves , Applying deep learning to predicting dementia and mild cognitive impairment, in IFIP Int. Conf. Artificial Intelligence Applications and Innovations (Springer, Cham, 2020), pp. 308–319. CrossrefGoogle Scholar
    • 16. A. M. Johansen and L. Evers, Monte Carlo methods, Lect. Notes, University of Bristol, 2010. Available online at https://warwick.ac.uk/fac/sci/ statistics/staff/academic-research/johansen/teach-ing/mcm-2007.pdf. Google Scholar
    • 17. R. K. Lama, J. Gwak, J. S. Park and S.W. Lee , Diagnosis of Alzheimer’s disease based on structural MRI images using a regularized extreme learning machine and PCA features, J. Healthc. Eng. 1(2017) 1–11. Google Scholar
    • 18. H. Abdi and L. J. Williams , Principal component analysis, Wiley Interdiscip. Rev. Comput. Stat. 2(4) (2010) 433–459. CrossrefGoogle Scholar
    • 19. S. Ding, X. Xu and R. Nie , Extreme learning machine and its applications, Neural Comput. Appl. 25(3) (2014) 549–556. Crossref, Web of ScienceGoogle Scholar
    • 20. S. Basaia, F. Agosta, L. Wagner, E. Canu, G. Magnani, R. Santangelo and M. Filippi , Alzheimer’s disease neuroimaging initiative: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks, NeuroImage: Clin. 21 (2019) 101645. Crossref, Medline, Web of ScienceGoogle Scholar
    • 21. E. Yagis, L. Citi, S. Diciotti, C. Marzi, S. W. Atnafu and A. G. S. De Herrera , 3D convolutional neural networks for diagnosis of Alzheimer’s disease via structural MRI, in IEEE 33rd Int. Symp. Computer-Based Medical Systems (CBMS) (IEEE, Rochester, MN, USA, 2020), pp. 65–70. Google Scholar
    • 22. N. T. Duc, S. Ryu, M. N. I. Qureshi, M. Choi, K. H. Lee and B. Lee , 3D-deep learning based automatic diagnosis of Alzheimer’s disease with joint MMSE prediction using resting-state fMRI, Neuroinformatics 18(1) (2020) 71–86. Crossref, Medline, Web of ScienceGoogle Scholar
    • 23. S. Qiu, G. H. Chang, M. Panagia, D. M. Gopal, R. Au and V. B. Kolachalama , Fusion of deep learning models of MRI scans, mini–mental state examination, and logical memory test enhances diagnosis of mild cognitive impairment, Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 10 (2018) 737–749. MedlineGoogle Scholar
    • 24. S. Spasov, L. Passamonti, A. Duggento, P. Lio and N. Toschi , Alzheimer’s disease neuroimaging initiative: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease, NeuroImage 189 (2019) 276–287. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. D. Yang, K. S. Hong, S. H. Yoo and C. S. Kim , Evaluation of neural degeneration biomarkers in the prefrontal cortex for early identification of patients with mild cognitive impairment: An fNIRS study, Front. Human Neurosci. 13 (2019) 317. Crossref, Medline, Web of ScienceGoogle Scholar
    • 26. F. J. Martinez-Murcia, J. M. Górriz, J. Ramírez and A. Ortiz , Convolutional neural networks for neuroimaging in Parkinson’s disease: Is preprocessing needed? Int. J. Neural Syst. 28(10) (2018) 1850035. Link, Web of ScienceGoogle Scholar
    • 27. T. Iizuka, M. Fukasawa and M. Kameyama , Deep-learning-based imaging-classification identified cingulate island sign in dementia with Lewy bodies, Sci. Rep. 9(1) (2019) 1–9. Crossref, Medline, Web of ScienceGoogle Scholar
    • 28. H. Li, M. Habes, D. A. Wolk and Y. Fan , Alzheimer’s disease neuroimaging initiative: A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data, Alzheimer’s Dement. 15(8) (2019) 1059–1070. Crossref, Medline, Web of ScienceGoogle Scholar
    • 29. G. Mirzaei and H. Adeli , Machine learning techniques for diagnosis of Alzheimer’s disease, mild cognitive disorder, and other types of dementia, Biomed. Signal Process. Control 72 (2022) 103293. Crossref, Web of ScienceGoogle Scholar
    • 30. N. Mammone, F. C. Ieracitano, H. Adeli and F. C. Morabito , Permutation Jaccard distance-based hierarchical clustering to estimate EEG network density modifications in MCI subjects, IEEE Trans. Neural Netw. Learn. Syst. (2018). Crossref, Medline, Web of ScienceGoogle Scholar
    • 31. J. P. Amezquita-Sanchez, N. Mammone, M. C. Morabito, S. Marino and H. Adeli , A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals, J. Neurosci. Methods 322 (2019) 88–95. Crossref, Medline, Web of ScienceGoogle Scholar
    • 32. J. P. Amezquita-Sanchez, N. Mammone, F. C. Morabito and H. Adeli , A new dispersion entropy and fuzzy logic system-based methodology for automated classification of dementia stages using electroencephalograms, Clin. Neurol. Neurosurg. 201 (2021) 106446. Crossref, Medline, Web of ScienceGoogle Scholar
    • 33. M. Ahmadlou, A. Adeli, R. Bajo and H. Adeli , Complexity of functional connectivity networks in mild cognitive impairment patients during a working memory task, Clin. Neurophysiol. 125(4) (2014) 694–702. Crossref, Medline, Web of ScienceGoogle Scholar
    • 34. J. DelEtoile and H. Adeli , Graph theory and brain connectivity in Alzheimer’s disease, Neuroscientist 23(6) (2017) 616–626. Crossref, Medline, Web of ScienceGoogle Scholar
    • 35. A. Stamoulakatos, J. Cardona, C. Michie, I. Andonovic, P. Lazaridis, X. Bellekens, R. Atkinson, M. M. Hossain and C. Tachtatzis , Proceedings of OCEANS 2021, San Diego, CA, USA, 20–23 September 2021, IEEE, pp. 1–10. https://doi.org/10.23919/OCEANS44145.2021.9706125 Google Scholar
    • 36. J. N. Kather, A. T. Pearson, N. Halama, D. Jäger, J. Krause, S. H. Loosen, A. Marx, P. Boor, F. Tacke, U. P. Neumann and H. I. Grabsch , Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer, Nat. Med. 25(7) (2019) 1054–1056. Crossref, Medline, Web of ScienceGoogle Scholar
    • 37. B. N. Narayanan, R. Ali and R. C. Hardie , Performance analysis of machine learning and deep learning architectures for malaria detection on cell images, in Proc. of SPIE Optical Engineering and Applications, Applications of Machine Learning, 111390W, 6 September 2019, San Diego, California, United States, Society of Photo-Optical Instrumentation Engineers (SPIE), Vol. 11139, pp. 240–247. Google Scholar
    • 38. M. Sezgin and B. Sankur , Survey over image thresholding techniques and quantitative performance evaluation, J. Electron. Imag. 13(1) (2004) 146–165. Crossref, Web of ScienceGoogle Scholar
    • 39. D. Kaur and Y. Kaur , Various image segmentation techniques: A review, Int. J. Comput. Sci. Mobile Comput. 3(5) (2014) 809–814. Google Scholar
    • 40. Y. Lu, T. Jiang and Y. Zang , Region growing method for the analysis of functional MRI data, NeuroImage 20(1) (2003) 455–465. Crossref, Medline, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!