World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Detection of Alzheimer’s Dementia by Using Signal Decomposition and Machine Learning Methods

    https://doi.org/10.1142/S0129065722500423Cited by:16 (Source: Crossref)

    Dementia is one of the most common neurological disorders causing defection of cognitive functions, and seriously affects the quality of life. In this study, various methods have been proposed for the detection and follow-up of Alzheimer’s dementia (AD) with advanced signal processing methods by using electroencephalography (EEG) signals. Signal decomposition-based approaches such as empirical mode decomposition (EMD), ensemble EMD (EEMD), and discrete wavelet transform (DWT) are presented to classify EEG segments of control subjects (CSs) and AD patients. Intrinsic mode functions (IMFs) are obtained from the signals using the EMD and EEMD methods, and the IMFs showing the most significant differences between the two groups are selected by applying previously suggested selection procedures. Five-time-domain and 5-spectral-domain features are calculated using selected IMFs, and five detail and approximation coefficients of DWT. Signal decomposition processes are conducted for both 1 min and 5 s EEG segment durations. For the 1 min segment duration, all the proposed approaches yield prominent classification performances. While the highest classification accuracies are obtained using EMD (91.8%) and EEMD (94.1%) approaches from the temporal/right brain cluster, the highest classification accuracy for the DWT (95.2%) approach is obtained from the temporal/left brain cluster for 1 min segment duration.

    References

    • 1. A. Ortiz, J. Munilla, J. M. Gorriz and J. Ramirez, Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease, Int. J. Neural Syst. 26(07) (2016) 1650025. Link, Web of ScienceGoogle Scholar
    • 2. A. Association, 2019 Alzheimer’s disease facts and figures, Alzheimers Dement. 15(3) (2019) 321–387. Crossref, Web of ScienceGoogle Scholar
    • 3. S. Bhat, U. R. Acharya, N. Dadmehr and H. Adeli, Clinical neurophysiological and automated EEG-based diagnosis of the Alzheimer’s disease, Eur. Neurol. 74(3–4) (2015) 202–210. Crossref, Medline, Web of ScienceGoogle Scholar
    • 4. J. DelEtoile and H. Adeli, Graph theory and brain connectivity in Alzheimer’s disease, Neuroscientist 23(6) (2017) 616–626. Crossref, Medline, Web of ScienceGoogle Scholar
    • 5. G. Mirzaei and H. Adeli, Machine learning techniques for diagnosis of Alzheimer disease, mild cognitive disorder, and other types of dementia, Biomed. Signal Process. Control 72 (2022) 103293. Crossref, Web of ScienceGoogle Scholar
    • 6. M. Ahmadlou, A. Adeli, R. Bajo and H. Adeli, Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task, Clin. Neurophysiol. 125(4) (2014) 694–702. Crossref, Medline, Web of ScienceGoogle Scholar
    • 7. J. P. Amezquita-Sanchez, A. Adeli and H. Adeli, A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG), Behav. Brain Res. 305 (2016) 174–180. Crossref, Medline, Web of ScienceGoogle Scholar
    • 8. K. D. Tzimourta, N. Giannakeas, A. T. Tzallas, L. G. Astrakas, T. Afrantou, P. Ioannidis, N. Grigoriadis, P. Angelidis, D. G. Tsalikakis and M. G. Tsipouras, EEG window length evaluation for the detection of Alzheimer’s disease over different brain regions, Brain Sci. 9(4) (2019) 81. Crossref, Medline, Web of ScienceGoogle Scholar
    • 9. K. D. Tzimourta et al., Analysis of electroencephalographic signals complexity regarding Alzheimer’s disease, Comput. Electr. Eng. 76 (2019) 198–212. Crossref, Web of ScienceGoogle Scholar
    • 10. D. Abásolo, R. Hornero, P. Espino, J. Poza, C. I. Sánchez and R. de la Rosa, Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with approximate entropy, Clin. Neurophysiol. 116(8) (2005) 1826–1834. Crossref, Medline, Web of ScienceGoogle Scholar
    • 11. A. I. Triggiani et al., Classification of healthy subjects and Alzheimer’s disease patients with dementia from cortical sources of resting state EEG rhythms: A study using artificial neural networks, Front. Neurosci. 10 (2017) 604. Crossref, Medline, Web of ScienceGoogle Scholar
    • 12. F. Miraglia, F. Vecchio, C. Marra, D. Quaranta, F. Alù, B. Peroni, G. Granata, E. Judica, M. Cotelli and P. M. Rossini, Small world index in default mode network predicts progression from mild cognitive impairment to dementia, Int. J. Neural Syst. 30(02) (2020) 2050004. Link, Web of ScienceGoogle Scholar
    • 13. L. Tylová, J. Kukal, V. Hubata-Vacek and O. Vyšata, Unbiased estimation of permutation entropy in EEG analysis for Alzheimer’s disease classification, Biomed. Signal Process. Control 39 (2018) 424–430. Crossref, Web of ScienceGoogle Scholar
    • 14. N. Mammone, C. Ieracitano, H. Adeli, A. Bramanti and F. C. Morabito, Permutation Jaccard distance-based hierarchical clustering to estimate EEG network density modifications in MCI subjects, IEEE Trans. Neural Netw. Learn. Syst. 29(10) (2018) 5122–5135. Crossref, Web of ScienceGoogle Scholar
    • 15. T. Staudinger and R. Polikar, Analysis of complexity based EEG features for the diagnosis of Alzheimer’s disease, in 2011 Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (IEEE, 2011), pp. 2033–2036. CrossrefGoogle Scholar
    • 16. B. Deng, L. Cai, S. Li, R. Wang, H. Yu, Y. Chen and J. Wang, Multivariate multi-scale weighted permutation entropy analysis of EEG complexity for Alzheimer’s disease, Cogn. Neurodyn. 11(3) (2017) 217–231. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. J. P. Amezquita-Sanchez, N. Mammone, F. C. Morabito and H. Adeli, A new dispersion entropy and fuzzy logic system methodology for automated classification of dementia stages using electroencephalograms, Clin. Neurol. Neurosurg. 201 (2021) 106446. Crossref, Medline, Web of ScienceGoogle Scholar
    • 18. J. Jeong, S. Y. Kim and S.-H. Han, Non-linear dynamical analysis of the EEG in Alzheimer’s disease with optimal embedding dimension, Electroencephalogr. Clin. Neurophysiol. 106(3) (1998) 220–228. Crossref, MedlineGoogle Scholar
    • 19. J. P. Amezquita-Sanchez, N. Mammone, F. C. Morabito, S. Marino and H. Adeli, A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals, J. Neurosci. Methods 322 (2019) 88–95. Crossref, Medline, Web of ScienceGoogle Scholar
    • 20. D. Abásolo, R. Hornero, C. Gómez, M. García and M. López, Analysis of EEG background activity in Alzheimer’s disease patients with Lempel–Ziv complexity and central tendency measure, Med. Eng. Phys. 28(4) (2006) 315–322. Crossref, Medline, Web of ScienceGoogle Scholar
    • 21. S. Simons and D. Abásolo, Distance-based Lempel–Ziv complexity for the analysis of electroencephalograms in patients with Alzheimer’s disease, Entropy 19(3) (2017) 129. Crossref, Web of ScienceGoogle Scholar
    • 22. M. S. Safi and S. M. M. Safi, Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters, Biomed. Signal Process. Control 65 (2021) 102338. Crossref, Web of ScienceGoogle Scholar
    • 23. V. Bairagi, EEG signal analysis for early diagnosis of Alzheimer disease using spectral and wavelet based features, Int. J. Inf. Technol. 10(3) (2018) 403–412. Google Scholar
    • 24. F. Bertè, G. Lamponi, R. S. Calabrò and P. Bramanti, Elman neural network for the early identification of cognitive impairment in Alzheimer’s disease, Funct. Neurol. 29(1) (2014) 57. MedlineGoogle Scholar
    • 25. O. K. Cura, S. K. Atli, H. S. Türe and A. Akan, Epileptic seizure classifications using empirical mode decomposition and its derivative, Biomed. Eng. Online 19(1) (2020) 1–22. Medline, Web of ScienceGoogle Scholar
    • 26. S. Raghu, N. Sriraam, Y. Temel, S. V. Rao, A. S. Hegde and P. L. Kubben, Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier, Comput. Biol. Med. 110 (2019) 127–143. Crossref, Medline, Web of ScienceGoogle Scholar
    • 27. H. Adeli, Z. Zhou and N. Dadmehr, Analysis of EEG records in an epileptic patient using wavelet transform, J. Neurosci. Methods 123(1) (2003) 69–87. Crossref, Medline, Web of ScienceGoogle Scholar
    • 28. A. B. Das and M. I. H. Bhuiyan, Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD-DWT domain, Biomed. Signal Process. Control 29 (2016) 11–21. Crossref, Web of ScienceGoogle Scholar
    • 29. E. Alickovic, J. Kevric and A. Subasi, Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction, Biomed. Signal Process. Control 39 (2018) 94–102. Crossref, Web of ScienceGoogle Scholar
    • 30. A. T. Tzallas, M. G. Tsipouras and D. I. Fotiadis, Epileptic seizure detection in EEGs using time–frequency analysis, IEEE Trans. Inf. Technol. Biomed. 13(5) (2009) 703–710. Crossref, Medline, Web of ScienceGoogle Scholar
    • 31. C. Junsheng, Y. Dejie and Y. Yu, Research on the intrinsic mode function (IMF) criterion in EMD method, Mech. Syst. Signal Process. 20(4) (2006) 817–824. Crossref, Web of ScienceGoogle Scholar
    • 32. Z. Peng, W. T. Peter and F. Chu, A comparison study of improved Hilbert–Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing, Mech. Syst. Signal Process. 19(5) (2005) 974–988. Crossref, Web of ScienceGoogle Scholar
    • 33. M. Lozano, J. A. Fiz and R. Jané, Performance evaluation of the Hilbert–Huang transform for respiratory sound analysis and its application to continuous adventitious sound characterization, Signal Process. 120 (2016) 99–116. Crossref, Web of ScienceGoogle Scholar
    • 34. A. Komaty, A.-O. Boudraa, B. Augier and D. Daré-Emzivat, EMD-based filtering using similarity measure between probability density functions of IMFs, IEEE Trans. Instrum. Meas. 63(1) (2013) 27–34. Crossref, Web of ScienceGoogle Scholar
    • 35. L. A. Moctezuma and M. Molinas, Classification of low-density EEG for epileptic seizures by energy and fractal features based on EMD, J. Biomed. Res. 34(3) (2020) p. 180. Crossref, Web of ScienceGoogle Scholar
    • 36. R. Cassani, T. H. Falk, F. J. Fraga, P. A. Kanda and R. Anghinah, The effects of automated artifact removal algorithms on electroencephalography-based Alzheimer’s disease diagnosis, Front. Aging Neurosci. 6 (2014) 55. Crossref, Medline, Web of ScienceGoogle Scholar
    • 37. T. H. Falk, F. J. Fraga, L. Trambaiolli and R. Anghinah, EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer’s disease, EURASIP J. Adv. Signal Process. 2012(1) (2012) 1–9. Crossref, Web of ScienceGoogle Scholar
    • 38. N. Kulkarni and V. Bairagi, Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector machine classifier, IETE J. Res. 63(1) (2017) 11–22. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!