World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Emotion Classification from EEG with a Low-Cost BCI Versus a High-End Equipment

    https://doi.org/10.1142/S0129065722500411Cited by:7 (Source: Crossref)
    This article is part of the issue:

    The assessment of physiological signals such as the electroencephalography (EEG) has become a key point in the research area of emotion detection. This study compares the performance of two EEG devices, a low-cost brain–computer interface (BCI) (Emotiv EPOC+) and a high-end EEG (BrainVision), for the detection of four emotional conditions over 20 participants. For that purpose, signals were acquired with both devices under the same experimental procedure, and a comparison was made under three different scenarios, according to the number of channels selected and the sampling frequency of the signals analyzed. A total of 16 statistical, spectral and entropy features were extracted from the EEG recordings. A statistical analysis revealed a major number of statistically significant features for the high-end EEG than the BCI device under the three comparative scenarios. In addition, different machine learning algorithms were used for evaluating the classification performance of the features extracted from high-end EEG and low-cost BCI in each scenario. Artificial neural networks reported the best performance for both devices with an F1-score of 75.08% for BCI and 98.78% for EEG. Although the professional EEG outcomes were higher than the low-cost BCI ones, both devices demonstrated a notable performance for the classification of the four emotional conditions.

    References

    • 1. P. R. Kleinginna and A. M. Kleinginna , A categorized list of emotion definitions, with suggestions for a consensual definition, Motiv. Emot. 5(4) (1981) 345–379. CrossrefGoogle Scholar
    • 2. C. E. Izard , The many meanings/aspects of emotion: Definitions, functions, activation, and regulation, Emot. Rev. 2(4) (2010) 363–370. CrossrefGoogle Scholar
    • 3. J. C. Castillo, A. Fernández-Caballero, Á. Castro-González, M. A. Salichs and M. T. López , A framework for recognizing and regulating emotions in the elderly, in Ambient Assisted Living and Daily Activities, eds. L. Pecchia, L. L. Chen, C. Nugent and J. Bravo (Springer International Publishing, Cham, 2014), pp. 320–327. CrossrefGoogle Scholar
    • 4. R. Sánchez-Reolid, A. Martínez-Rodrigo, M. T. López and A. Fernández-Caballero , Deep support vector machines for the identification of stress condition from electrodermal activity, Int. J. Neural Syst. 30(07) (2020) 2050031. Link, Web of ScienceGoogle Scholar
    • 5. M. Val-Calvo, J. R. Álvarez-Sánchez, J. M. Ferrández-Vicente, A. Díaz-Morcillo and E. Fernández-Jover , Real-time multi-modal estimation of dynamically evoked emotions using EEG, heart rate and galvanic skin response, Int. J. Neural Syst. 30(04) (2020) 2050013. Link, Web of ScienceGoogle Scholar
    • 6. P. Hajek, A. Barushka and M. Munk , Neural networks with emotion associations, topic modeling and supervised term weighting for sentiment analysis, Int. J. Neural Syst. 31(10) (2021) 2150013. Link, Web of ScienceGoogle Scholar
    • 7. A. Burns, H. Adeli and J. A. Buford , Upper limb movement classification via electromyographic signals and an enhanced probabilistic network, J. Med. Syst. 44(10) (2020) 1–12. Crossref, Web of ScienceGoogle Scholar
    • 8. J. A. Russell , A circumplex model of affect, J. Pers. Soc. Psychol. 39(6) (1980) 1161. Crossref, Web of ScienceGoogle Scholar
    • 9. A. Martnez-Rodrigo, B. Garca-Martnez, R. Alcaraz, P. Gonzlez and A. Fernndez-Caballero , Multiscale entropy analysis for recognition of visually elicited negative stress from EEG recordings, Int. J. Neural Syst. 29(02) (2019) 1850038. Link, Web of ScienceGoogle Scholar
    • 10. A. Martnez-Rodrigo, B. Garca-Martnez, L. Zunino, R. Alcaraz and A. Fernndez-Caballero , Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition, Front. Neuroinform. 13 (2019) 40. Crossref, Medline, Web of ScienceGoogle Scholar
    • 11. J. Sorinas, J. C. Fernandez-Troyano, J. M. Ferrandez and E. Fernandez , Cortical asymmetries and connectivity patterns in the valence dimension of the emotional brain, Int. J. Neural Syst. 30(05) (2020) 2050021. Link, Web of ScienceGoogle Scholar
    • 12. B. Garca-Martnez, A. Fernndez-Caballero, L. Zunino and A. Martnez-Rodrigo , Recognition of emotional states from EEG signals with nonlinear regularity- and predictability-based entropy metrics, Cogn. Comput. 13 (2021) 403–417. Crossref, Web of ScienceGoogle Scholar
    • 13. B. Garcia-Martinez, A. Martinez-Rodrigo, R. Alcaraz and A. Fernandez-Caballero , A review on nonlinear methods using electroencephalographic recordings for emotion recognition, IEEE Trans. Affect. Comput. 12(03) (2021) 801–820. Crossref, Web of ScienceGoogle Scholar
    • 14. R. Yuvaraj, M. Murugappan, U. R. Acharya, H. Adeli, N. M. Ibrahim and E. Mesquita , Brain functional connectivity patterns for emotional state classification in Parkinson’s disease patients without dementia, Behav. Brain Res. 298 (2016) 248–260. Crossref, Medline, Web of ScienceGoogle Scholar
    • 15. S. Hulbert and H. Adeli , Spotting psychopaths using technology, Rev. Neurosci. 26(6) (2015) 721–732. Crossref, Medline, Web of ScienceGoogle Scholar
    • 16. J. Bajada and F. B. Bonello, arXiv:2110.05635. Google Scholar
    • 17. K. Holewa and A. Nawrocka , Emotiv EPOC neuroheadset in brain-computer interface, in 15th Int. Carpathian Control Conf. (IEEE, 2014), pp. 149–152. CrossrefGoogle Scholar
    • 18. BrainVision, BrainAmp MR (2020). Google Scholar
    • 19. V. M. González, R. Robbes, G. Góngora and S. Medina , Measuring concentration while programming with low-cost BCI devices: Differences between debugging and creativity tasks, in Int. Conf. Augmented Cognition (Springer, 2015), pp. 605–615. CrossrefGoogle Scholar
    • 20. L. Piccini, S. Parini, L. Maggi and G. Andreoni , A wearable home BCI system: Preliminary results with SSVEP protocol, in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conf. (IEEE, 2006), pp. 5384–5387. Google Scholar
    • 21. J. Kosiński, K. Szklanny, A. Wieczorkowska and M. Wichrowski , An analysis of game-related emotions using Emotiv EPOC, in 2018 Federated Conf. Computer Science and Information Systems (IEEE, 2018), pp. 913–917. Google Scholar
    • 22. F. Mulla, E. Eya, E. Ibrahim, A. Alhaddad, R. Qahwaji and R. Abd-Alhameed , Neurological assessment of music therapy on the brain using Emotiv EPOC, in 2017 Internet Technologies and Applications (IEEE, 2017), pp. 259–263. CrossrefGoogle Scholar
    • 23. D. M. Buchanan, J. Grant and A. D’Angiulli , Commercial wireless versus standard stationary EEG systems for personalized emotional brain-computer interfaces: A preliminary reliability check, Neurosci. Res. Notes 2(1) (2019) 7–15. CrossrefGoogle Scholar
    • 24. A. Gkaintatzis, R. Van Der Lubbe, K. Karantinou and E. Constantinides , Consumers’ cognitive, emotional and behavioral responses towards background music: An EEG study, in 15th Int. Conf. Web Information Systems and Technologies (Science and Technology Publications, 2019), pp. 314–318. Google Scholar
    • 25. A. Bartolomé-Tomás, R. Sánchez-Reolid, A. Fernández-Sotos, J. M. Latorre and A. Fernández-Caballero , Arousal detection in elderly people from electrodermal activity using musical stimuli, Sensors 20(17) (2020) 4788. Crossref, Web of ScienceGoogle Scholar
    • 26. Y. Liu, X. Jiang, T. Cao, F. Wan, P. U. Mak, P.-I. Mak and M. I. Vai , Implementation of SSVEP based BCI with Emotiv EPOC, in 2012 IEEE Int. Conf. Virtual Environments Human–Computer Interfaces and Measurement Systems (IEEE, 2012), pp. 34–37. CrossrefGoogle Scholar
    • 27. X. Liu, F. Chao, M. Jiang, C. Zhou, W. Ren and M. Shi , Towards low-cost P300-based BCI using Emotiv EPOC headset, UK Workshop on Computational Intelligence (Springer, 2017), pp. 239–244. Google Scholar
    • 28. T. Ousterhout and M. Dyrholm , Cortically coupled computer vision with Emotiv headset using distractor variables, in 2013 IEEE 4th Int. Conf. Cognitive Infocommunications (IEEE, 2013), pp. 245–250. CrossrefGoogle Scholar
    • 29. Z. Chen, Y. He and Y. Yu , Natural environment promotes deeper brain functional connectivity than built environment, BMC Neurosci. 16(1) (2015) 1–2. Crossref, Medline, Web of ScienceGoogle Scholar
    • 30. M. Strmiska, Z. Koudelková and M. Žabčíková , Measuring brain signals using Emotiv devices, WSEAS Trans. Syst. Control 13 (2018) 537–542. Google Scholar
    • 31. M. Lang, Investigating the Emotiv EPOC for cognitive control in limited training time (2012). Engineering Dissertation, University of Canterbury, New Zealand. Google Scholar
    • 32. S. Chaabene, B. Bouaziz, A. Boudaya, A. Hökelmann, A. Ammar and L. Chaari , Convolutional neural network for drowsiness detection using EEG signals, Sensors 21(5) (2021) 1734. Crossref, Web of ScienceGoogle Scholar
    • 33. D. Sawicki, A. Wolska, P. Rosłon and S. Ordysiński , New EEG measure of the alertness analyzed by Emotiv EPOC in a real working environment, in Int. Congress on Neurotechnology, Electronics and Informatics, Vol. 2 (SCITEPRESS, 2016), pp. 35–42. CrossrefGoogle Scholar
    • 34. F. Moradi, H. Mohammadi, M. Rezaei, P. Sariaslani, N. Razazian, H. Khazaie and H. Adeli , A novel method for sleep-stage classification based on sonification of sleep electroencephalogram signals using wavelet transform and recurrent neural network, Eur. Neurol. 83(5) (2020) 468–486. Crossref, Medline, Web of ScienceGoogle Scholar
    • 35. N. Browarska, A. Kawala-Sterniuk, J. Zygarlicki, M. Podpora, M. Pelc, R. Martinek and E. J. Gorzelańczyk , Comparison of smoothing filters’ influence on quality of data recorded with the Emotiv EPOC flex brain–computer interface headset during audio stimulation, Brain Sci. 11(1) (2021) 98. Crossref, Medline, Web of ScienceGoogle Scholar
    • 36. J. P. Amezquita-Sanchez, N. Mammone, F. C. Morabito and H. Adeli , A new dispersion entropy and fuzzy logic system methodology for automated classification of dementia stages using electroencephalograms, Clin. Neurol. Neurosurg. 201 (2021) 106446. Crossref, Medline, Web of ScienceGoogle Scholar
    • 37. S. Aydin, S. Demirtaş, K. Ateş and M. A. Tunga , Emotion recognition with eigen features of frequency band activities embedded in induced brain oscillations mediated by affective pictures, Int. J. Neural Syst. 26(03) (2016) 1650013. Link, Web of ScienceGoogle Scholar
    • 38. Y. Tonoyan, D. Looney, D. P. Mandic and M. M. Van Hulle , Discriminating multiple emotional states from EEG using a data-adaptive, multiscale information-theoretic approach, Int. J. Neural Syst. 26(02) (2016) 1650005. Link, Web of ScienceGoogle Scholar
    • 39. X. Fernández, R. García, E. Ferreira and J. Menéndez , Classification of basic human emotions from electroencephalography data, in Iberoamerican Congress on Pattern Recognition (Springer, 2015), pp. 108–115. CrossrefGoogle Scholar
    • 40. S. Garcia and F. Herrera , An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons, J. Mach. Learn. Res. 9(12) (2008) 2677–2694. Google Scholar
    • 41. J. Atkinson and D. Campos , Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers, Expert Syst. Appl. 47 (2016) 35–41. Crossref, Web of ScienceGoogle Scholar
    • 42. C. Ieracitano, F. C. Morabito, A. Hussain and N. Mammone , A hybrid-domain deep learning-based BCI for discriminating hand motion planning from EEG sources, Int. J. Neural Syst. 31(09) (2021) 2150038. Link, Web of ScienceGoogle Scholar
    • 43. F. Laport, A. Dapena, P. M. Castro, F. J. Vazquez-Araujo and D. Iglesia , A prototype of EEG system for IoT, Int. J. Neural Syst. 30(07) (2020) 2050018. Link, Web of ScienceGoogle Scholar
    • 44. A. Ortiz, F. J. Martinez-Murcia, J. L. Luque, A. Giménez, R. Morales-Ortega and J. Ortega , Dyslexia diagnosis by EEG temporal and spectral descriptors: An anomaly detection approach, Int. J. Neural Syst. 30(07) (2020) 2050029. Link, Web of ScienceGoogle Scholar
    • 45. J. Gomez-Pilar, J. Poza, A. Bachiller, C. Gómez, P. Núñez, A. Lubeiro, V. Molina and R. Hornero , Quantification of graph complexity based on the edge weight distribution balance: Application to brain networks, Int. J. Neural Syst. 28(01) (2018) 1750032. Link, Web of ScienceGoogle Scholar
    • 46. D. R. Edla, S. Dodia, A. Bablani and V. Kuppili , An efficient deep learning paradigm for deceit identification test on EEG signals, ACM Trans. Manag. Inf. Syst. 12(3) (2021) 1–20. Crossref, Web of ScienceGoogle Scholar
    • 47. R. Rajkumar et al., Comparison of EEG microstates with resting state fMRI and FDG-PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data, Hum. Brain Mapp. 42(13) (2021) 4122–4133. Crossref, Medline, Web of ScienceGoogle Scholar
    • 48. N. A. Badcock, K. A. Preece, B. de Wit, K. Glenn, N. Fieder, J. Thie and G. McArthur , Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children, PeerJ 3 (2015) e907. Crossref, Medline, Web of ScienceGoogle Scholar
    • 49. M. Duvinage, T. Castermans, T. Dutoit, M. Petieau, T. Hoellinger, C. D. Saedeleer, K. Seetharaman and G. Cheron , A P300-based quantitative comparison between the Emotiv EPOC headset and a medical EEG device, Biomed. Eng. 765(1) (2012) 2012–2764. Google Scholar
    • 50. N. S. Williams, G. M. McArthur, B. de Wit, G. Ibrahim and N. A. Badcock , A validation of Emotiv EPOC Flex saline for EEG and ERP research, PeerJ 8 (2020) e9713. Crossref, Medline, Web of ScienceGoogle Scholar
    • 51. M. N. Fakhruzzaman, E. Riksakomara and H. Suryotrisongko , EEG wave identification in human brain with Emotiv EPOC for motor imagery, Procedia Comput. Sci. 72 (2015) 269–276. CrossrefGoogle Scholar
    • 52. P. Chowdhury, S. K. Shakim, M. R. Karim and M. K. Rhaman , Cognitive efficiency in robot control by Emotiv EPOC, in 2014 Int. Conf. Informatics, Electronics & Vision (IEEE, 2014), pp. 1–6. CrossrefGoogle Scholar
    • 53. K. Stytsenko, E. Jablonskis and C. Prahm , Evaluation of consumer EEG device Emotiv EPOC, in MEi:CogSci Conf. (University of Vienna, 2011), p. 99. Google Scholar
    • 54. Eprime, Eprime: Psychology Software tools (2020). Google Scholar
    • 55. P. J. Lang et al., International affective picture system (IAPS): Technical manual and affective ratings, NIMH Center Study Emotion Attention 1(39–58) (1997) 3. Google Scholar
    • 56. J. D. Morris , Observations SAM: The Self-Assessment Manikin — An efficient cross-cultural measurement of emotional response, J. Advert. Res. 35(6) (1995) 63–68. Web of ScienceGoogle Scholar
    • 57. H. Nolan, R. Whelan and R. Reilly , FASTER: Fully automated statistical thresholding for EEG artifact rejection, J. Neurosci. Methods 192(1) (2010) 152–162. Crossref, Medline, Web of ScienceGoogle Scholar
    • 58. S. Sanei , Adaptive Processing of Brain Signals (John Wiley & Sons, 2013). CrossrefGoogle Scholar
    • 59. S. Koelstra, C. Muhl, M. Soleymani, J. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt and I. Patras , DEAP: A database for emotion analysis using physiological signals, IEEE Trans. Affect. Comput. 3(1) (2012) 18–31. Crossref, Web of ScienceGoogle Scholar
    • 60. R. Li and J. C. Principe , Blinking artifact removal in cognitive EEG data using ICA, in 2006 Int. Conf. the IEEE Engineering in Medicine and Biology Society (IEEE, 2006), pp. 5273–5276. CrossrefGoogle Scholar
    • 61. J. R. Iversen and S. Makeig , MEG/EEG data analysis using EEGLAB, in Magnetoencephalography: From Signals to Dynamic Cortical Networks (Springer, 2019), pp. 391–406. CrossrefGoogle Scholar
    • 62. A. Delorme and S. Makeig , EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J. Neurosci. Methods 134(1) (2004) 9–21. Crossref, Medline, Web of ScienceGoogle Scholar
    • 63. R. Sánchez-Reolid, F. L. de la Rosa, M. T. López and A. Fernández-Caballero , One-dimensional convolutional neural networks for low/high arousal classification from electrodermal activity, Biomed. Signal Process. Control 71 (2022) 103203. Crossref, Web of ScienceGoogle Scholar
    • 64. P. Gaur, H. Gupta, A. Chowdhury, K. McCreadie, R. B. Pachori and H. Wang , A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI, IEEE Trans. Instrum. Meas. 70 (2021) 1–9. Crossref, Medline, Web of ScienceGoogle Scholar
    • 65. J. N. Saby and P. J. Marshall , The utility of EEG band power analysis in the study of infancy and early childhood, Dev. Neuropsychol. 37(3) (2012) 253–273. Crossref, Medline, Web of ScienceGoogle Scholar
    • 66. T. Park, M. Lee, T. Jeong, Y.-I. Shin and S.-M. Park , Quantitative analysis of EEG power spectrum and EMG median power frequency changes after continuous passive motion mirror therapy system, Sensors 20(8) (2020) 2354. Crossref, Web of ScienceGoogle Scholar
    • 67. M. Demuru, S. M. La Cava, S. M. Pani and M. Fraschini , A comparison between power spectral density and network metrics: An EEG study, Biomed. Signal Process. Control 57 (2020) 101760. Crossref, Web of ScienceGoogle Scholar
    • 68. R. Wang, J. Wang, H. Yu, X. Wei, C. Yang and B. Deng , Power spectral density and coherence analysis of Alzheimer’s EEG, Cogn. Neurodyn. 9(3) (2015) 291–304. Crossref, Medline, Web of ScienceGoogle Scholar
    • 69. Z. Bian, Q. Li, L. Wang, C. Lu, S. Yin and X. Li , Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes, Front. Aging Neurosci. 6 (2014) 11. Crossref, Medline, Web of ScienceGoogle Scholar
    • 70. J. D. Bronzino , Biomedical Engineering Handbook 2 (Springer Science & Business Media, 2000). Google Scholar
    • 71. U. Melia, F. Claria, M. Vallverdu and P. Caminal , Measuring instantaneous and spectral information entropies by Shannon entropy of Choi–Williams distribution in the context of electroencephalography, Entropy 16(5) (2014) 2530–2548. Crossref, Web of ScienceGoogle Scholar
    • 72. E. W. Weisstein, Bonferroni correction (2004). Google Scholar
    • 73. R. Levesque et al., SPSS programming and data management (2007). Google Scholar
    • 74. P. Mallery , IBM SPSS Statistics 25 Step by Step: A Simple Guide and Reference (Routledge, 2018). Google Scholar
    • 75. MathWorks, Classification learner (2020). Google Scholar
    • 76. R. Sánchez-Reolid, A. Martínez-Rodrigo and A. Fernández-Caballero , Stress identification from electrodermal activity by support vector machines, in Understanding the Brain Function and Emotions, eds. J. Ferrández, J. Álvarez-Sánchez, F. de la Paz, J. Toledo and H. Adeli (Springer, 2019), pp. 202–211. Google Scholar
    • 77. R. Sánchez-Reolid, A. S. García, M. A. Vicente-Querol, L. Fernández-Aguilar, M. T. López, A. Fernández-Caballero and P. González , Artificial neural networks to assess emotional states from brain–computer interface, Electronics 7(12) (2018) 384. Crossref, Web of ScienceGoogle Scholar
    • 78. H. S. Nogay and H. Adeli , Detection of epileptic seizure using pretrained deep convolutional neural network and transfer learning, Eur. Neurol. 83(6) (2020) 602–614. Crossref, Medline, Web of ScienceGoogle Scholar
    • 79. J. M. Kilner and K. J. Friston , Topological inference for EEG and MEG, Ann. Appl. Stat. 4(3) (2010) 1272–1290. Crossref, Web of ScienceGoogle Scholar
    • 80. E. Schleiger, N. Sheikh, T. Rowland, A. Wong, S. Read and S. Finnigan , Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: The power of four electrodes, Int. J. Psychophysiol. 94(1) (2014) 19–24. Crossref, Medline, Web of ScienceGoogle Scholar
    • 81. X. Li, B. Hu, S. Sun and H. Cai , EEG-based mild depressive detection using feature selection methods and classifiers, Comput. Methods Programs Biomed. 136 (2016) 151–161. Crossref, Medline, Web of ScienceGoogle Scholar
    • 82. R. Srinivasan , Methods to improve the spatial resolution of EEG, Int. J. Bioelectromagn. 1(1) (1999) 102–111. Google Scholar
    • 83. I. A. Corley and Y. Huang , Deep EEG super-resolution: Upsampling EEG spatial resolution with generative adversarial networks, in 2018 IEEE EMBS Int. Conf. Biomedical & Health Informatics (IEEE, 2018), pp. 100–103. CrossrefGoogle Scholar
    • 84. M. B. Ayed , Balanced communication-avoiding support vector machine when detecting epilepsy based on EEG signals, Eng. Technol. Appl. Sci. Res. 10(6) (2020) 6462–6468. Crossref, Web of ScienceGoogle Scholar
    • 85. B. Kumar and D. Gupta , Universum based Lagrangian twin bounded support vector machine to classify EEG signals, Comput. Methods Programs Biomed. 208 (2021) 106244. Crossref, Medline, Web of ScienceGoogle Scholar
    • 86. A. Subasi and E. Ercelebi , Classification of EEG signals using neural network and logistic regression, Comput. Methods Programs Biomed. 78(2) (2005) 87–99. Crossref, Medline, Web of ScienceGoogle Scholar
    • 87. S. Raghu, N. Sriraam, Y. Temel, S. V. Rao and P. L. Kubben , EEG based multi-class seizure type classification using convolutional neural network and transfer learning, Neural Netw. 124 (2020) 202–212. Crossref, Medline, Web of ScienceGoogle Scholar
    • 88. U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan and H. Adeli , Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals, Comput. Biol. Med. 100 (2018) 270–278. Crossref, Medline, Web of ScienceGoogle Scholar
    • 89. Ö. Yıldırım, U. B. Baloglu and U. R. Acharya , A deep convolutional neural network model for automated identification of abnormal EEG signals, Neural Comput. Appl. 32 (2018) 1–12. Web of ScienceGoogle Scholar
    • 90. P. Peng, L. Xie and H. Wei , A deep fourier neural network for seizure prediction using convolutional neural network and ratios of spectral power, Int. J. Neural Syst. 31(8) (2021) 2150022. Link, Web of ScienceGoogle Scholar
    • 91. W. Shin, S.-J. Bu and S.-B. Cho , 3D-convolutional neural network with generative adversarial network and autoencoder for robust anomaly detection in video surveillance, Int. J. Neural Syst. 30(06) (2020) 2050034. Link, Web of ScienceGoogle Scholar
    • 92. M. A. Ozdemir, O. K. Cura and A. Akan , Epileptic EEG classification by using time-frequency images for deep learning, Int. J. Neural Syst. 31(8) (2021) 2150026. Link, Web of ScienceGoogle Scholar
    • 93. X. Wang, X. Wang, W. Liu, Z. Chang, T. Kärkkäinen and F. Cong , One dimensional convolutional neural networks for seizure onset detection using long-term scalp and intracranial EEG, Neurocomputing 459 (2021) 212–222. Crossref, Web of ScienceGoogle Scholar
    • 94. Y. Zhou, R. Ouyang and X. Wu , MI-EEG temporal information learning based on one-dimensional convolutional neural network, in 35th Youth Academic Annual Conf. Chinese Association of Automation (IEEE, 2020), pp. 499–504. CrossrefGoogle Scholar
    • 95. N. Michielli, U. R. Acharya and F. Molinari , Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals, Comput. Biol. Med. 106 (2019) 71–81. Crossref, Medline, Web of ScienceGoogle Scholar
    • 96. N. F. Güler, E. D. Übeyli and I. Güler , Recurrent neural networks employing Lyapunov exponents for EEG signals classification, Expert Syst. Appl. 29(3) (2005) 506–514. Crossref, Web of ScienceGoogle Scholar
    • 97. M. Ahmadlou and H. Adeli , Enhanced probabilistic neural network with local decision circles: A robust classifier, Integr. Comput. -Aided Eng. 17(3) (2010) 197–210. Crossref, Web of ScienceGoogle Scholar
    • 98. M. H. Rafiei and H. Adeli , A new neural dynamic classification algorithm, IEEE Trans. Neural Netw. Learn. Syst. 28(12) (2017) 3074–3083. Crossref, Medline, Web of ScienceGoogle Scholar
    • 99. D. R. Pereira, M. A. Piteri, A. N. Souza, J. P. Papa and H. Adeli , FEMa: A finite element machine for fast learning, Neural Comput. Appl. 32(10) (2020) 6393–6404. Crossref, Web of ScienceGoogle Scholar
    • 100. K. M. R. Alam, N. Siddique and H. Adeli , A dynamic ensemble learning algorithm for neural networks, Neural Comput. Appl. 32(12) (2020) 8675–8690. Crossref, Web of ScienceGoogle Scholar
    • 101. D. Wang, Z. Chen, C. Yang, J. Liu, F. Mo and Y. Zhang , Validation of the mobile emotiv device using a neuroscan event-related potential system, J. Med. Imaging Health Inform. 5(7) (2015) 1553–1557. Crossref, Web of ScienceGoogle Scholar
    • 102. N. Masood and H. Farooq , Emotiv-based low-cost brain computer interfaces: A survey, in Advances in Neuroergonomics and Cognitive Engineering (Springer, 2017), pp. 133–142. CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!