World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Evaluation of Brain Functional Connectivity from Electroencephalographic Signals Under Different Emotional States

    https://doi.org/10.1142/S0129065722500265Cited by:16 (Source: Crossref)
    This article is part of the issue:

    The identification of the emotional states corresponding to the four quadrants of the valence/arousal space has been widely analyzed in the scientific literature by means of multiple techniques. Nevertheless, most of these methods were based on the assessment of each brain region separately, without considering the possible interactions among different areas. In order to study these interconnections, this study computes for the first time the functional connectivity metric called cross-sample entropy for the analysis of the brain synchronization in four groups of emotions from electroencephalographic signals. Outcomes reported a strong synchronization in the interconnections among central, parietal and occipital areas, while the interactions between left frontal and temporal structures with the rest of brain regions presented the lowest coordination. These differences were statistically significant for the four groups of emotions. All emotions were simultaneously classified with a 95.43% of accuracy, overcoming the results reported in previous studies. Moreover, the differences between high and low levels of valence and arousal, taking into account the state of the counterpart dimension, also provided notable findings about the degree of synchronization in the brain within different emotional conditions and the possible implications of these outcomes from a psychophysiological point of view.

    References

    • 1. J. Liu, M. Li, Y. Pan, W. Lan, R. Zheng, F.-X. Wu and J. Wang , Complex brain network analysis and its applications to brain disorders: A survey, Complexity 2017 (2017) 8362741. Crossref, Web of ScienceGoogle Scholar
    • 2. S. Zola-Morgan , Localization of brain function: The legacy of Franz Joseph Gall (1758–1828), Annu. Rev. Neurosci. 18(1) (1995) 359–383. Crossref, Medline, Web of ScienceGoogle Scholar
    • 3. S. Anzellotti and M. N. Coutanche , Beyond functional connectivity: Investigating networks of multivariate representations, Trends Cogn. Sci. 22 (2018) 258–269. Crossref, Medline, Web of ScienceGoogle Scholar
    • 4. C. OReilly, J. D. Lewis and M. Elsabbagh , Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies, PLoS ONE 12(5) (2017) e0175870. Medline, Web of ScienceGoogle Scholar
    • 5. V. Sakkalis , Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG, Comput. Biol. Med. 41(12) (2011) 1110–1117. Crossref, Medline, Web of ScienceGoogle Scholar
    • 6. C. Liu, B. Abu-Jamous, E. Brattico and A. K. Nandi , Towards tunable consensus clustering for studying functional brain connectivity during affective processing, Int. J. Neural Syst. 27 (2017) 1650042. Link, Web of ScienceGoogle Scholar
    • 7. J. del’Etoile and H. Adeli , Graph theory and brain connectivity in Alzheimers disease, Neuroscientist 23 (2017) 616–626. Crossref, Medline, Web of ScienceGoogle Scholar
    • 8. N. Mammone, L. Bonanno, S. D. Salvo, S. Marino, P. Bramanti, A. Bramanti and F. C. Morabito , Permutation disalignment index as an indirect, EEG-based, measure of brain connectivity in MCI and AD patients, Int. J. Neural Syst. 27(05) (2017) 1750020. Link, Web of ScienceGoogle Scholar
    • 9. M. Ahmadlou, H. Adeli and A. Adeli , Spatiotemporal analysis of relative convergence of EEGs reveals differences between brain dynamics of depressive women and men, Clin. EEG Neurosci. 44 (2013) 175–181. Crossref, Medline, Web of ScienceGoogle Scholar
    • 10. R. Yuvaraj, M. Murugappan, U. R. Acharya, H. Adeli, N. M. Ibrahim and E. Mesquita , Brain functional connectivity patterns for emotional state classification in Parkinson’s disease patients without dementia, Behav. Brain Res. 298(B) (2016) 248–260. Crossref, Medline, Web of ScienceGoogle Scholar
    • 11. M. Ahmadlou, A. Adeli, R. Bajo and H. Adeli , Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task, Clin. Neurophysiol. 125(4) (2014) 694–702. Crossref, Medline, Web of ScienceGoogle Scholar
    • 12. M. Ahmadlou, H. Adeli and A. Adeli , Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder, J. Neurosci. Methods 211(2) (2012) 203–209. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. M. Ahmadlou and H. Adeli , Complexity of weighted graph: A new technique to investigate structural complexity of brain activities with applications to aging and autism, Neurosci. Lett. 650 (2017) 103–108. Crossref, Medline, Web of ScienceGoogle Scholar
    • 14. F. Al-Shargie, U. Tariq, M. Alex, H. Mir and H. Al-Nashash , Emotion recognition based on fusion of local cortical activations and dynamic functional networks connectivity: An EEG study, IEEE Access 7 (2019) 143550–143562. Crossref, Web of ScienceGoogle Scholar
    • 15. Y. Gao, X. Wang, T. Potter, J. Zhang and Y. Zhang , Single-trial EEG emotion recognition using Granger causality/transfer entropy analysis, J. Neurosci. Methods 346 (2020) 108904. Crossref, Medline, Web of ScienceGoogle Scholar
    • 16. S. M. Pincus , Assessing serial irregularity and its implications for health, Ann. N.Y. Acad. Sci. 954 (2001) 245–267. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. B. García-Martínez, A. Fernández-Caballero, R. Alcaraz and A. Martínez-Rodrigo , Cross-sample entropy for the study of coordinated brain activity in calm and distress conditions with electroencephalographic recordings, Neural. Comput. Appl. 33 (2021) 9343–9352. Crossref, Web of ScienceGoogle Scholar
    • 18. J. A. Russell , A circumplex model of affect, J. Pers. Soc. Psychol. 39(6) (1980) 1161–1178. Crossref, Web of ScienceGoogle Scholar
    • 19. P. Kuppens, F. Tuerlinckx, J. A. Russell and L. F. Barrett , The relation between valence and arousal in subjective experience, Psychol. Bull. 139(4) (2013) 917–940. Crossref, Medline, Web of ScienceGoogle Scholar
    • 20. S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt and I. Patras , DEAP: A database for emotion analysis using physiological signals, IEEE Trans. Affect. Comput. 3(1) (2012) 18–31. Crossref, Web of ScienceGoogle Scholar
    • 21. G. H. Klem et al., The ten-twenty electrode system of the International Federation, Electroencephalogr. Clin. Neurophysiol. 52 (1999) 3–6. Google Scholar
    • 22. A. Delorme and S. Makeig , EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J. Neurosci. Methods 134(1) (2004) 9–21. Crossref, Medline, Web of ScienceGoogle Scholar
    • 23. S. Tsuchimoto, S. Shibusawa, S. Iwama, M. Hayashi, K. Okuyama, N. Mizuguchi, K. Kato and J. Ushiba , Use of common average reference and large-Laplacian spatial-filters enhances EEG signal-to-noise ratios in intrinsic sensorimotor activity, J. Neurosci. Methods 353 (2021) p. 109089. Crossref, Medline, Web of ScienceGoogle Scholar
    • 24. W. W. Ismail, M. Hanif, S. Mohamed, N. Hamzah and Z. I. Rizman , Human emotion detection via brain waves study by using electroencephalogram (EEG), Int. J. Adv. Sci. Eng. Inf. Technol. 6(6) (2016) 1005–1011. CrossrefGoogle Scholar
    • 25. A. Pedroni, A. Bahreini and N. Langer , Automagic: Standardized preprocessing of big EEG data, NeuroImage 200 (2019) 460–473. Crossref, Medline, Web of ScienceGoogle Scholar
    • 26. J. S. Richman and J. R. Moorman , Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. - Heart Circ. Physiol. 278(6) (2000) H2039–H2049. Crossref, Medline, Web of ScienceGoogle Scholar
    • 27. S. M. Pincus , Irregularity and asynchrony in biologic network signals, Methods Enzymol. 321 (2000) 149–182. Crossref, Medline, Web of ScienceGoogle Scholar
    • 28. J. D. Veldhuis, S. M. Pincus, M. C. Garcia-Rudaz, M. G. Ropelato, M. E. Escobar and M. Barontini , Disruption of the joint synchrony of luteinizing hormone, testosterone, and androstenedione secretion in adolescents with polycystic ovarian syndrome, J. Clin. Endocrinol. Metab. 86(1) (2001) 72–79. Medline, Web of ScienceGoogle Scholar
    • 29. S. J. Reeves and Z. Zhe , Sequential algorithms for observation selection, IEEE Trans. Signal Process. 47(1) (1999) 123–132. Crossref, Web of ScienceGoogle Scholar
    • 30. N. Alia-Klein, R. N. Preston-Campbell, S. J. Moeller, M. A. Parvaz, K. Bachi, G. Gan, A. Zilverstand, A. B. Konova and R. Z. Goldstein , Trait anger modulates neural activity in the fronto-parietal attention network, PLoS ONE 13(4) (2018) e0194444. Crossref, Medline, Web of ScienceGoogle Scholar
    • 31. H. Saarimäki, A. Gotsopoulos, I. P. Jääskeläinen, J. Lampinen, P. Vuilleumier, R. Hari, M. Sams and L. Nummenmaa , Discrete neural signatures of basic emotions, Cereb. Cortex 26(6) (2016) 2563–2573. Crossref, Medline, Web of ScienceGoogle Scholar
    • 32. R. J. Davidson , Affect, cognition, and hemispheric specialization, in Emotion, Cognition, and Behavior (Cambridge University Press, New York, 1988), pp. 320–365. Google Scholar
    • 33. A. Martínez-Rodrigo, B. García-Martínez, R. Alcaraz, P. González and A. Fernández-Caballero , Multiscale entropy analysis for recognition of visually elicited negative stress from EEG recordings, Int. J. Neural Syst. 29(02) (2019) 1850038. Link, Web of ScienceGoogle Scholar
    • 34. J. Cai, W. Chen and Z. Yin , Multiple transferable recursive feature elimination technique for emotion recognition based on EEG signals, Symmetry 11(5) (2019) 683. Crossref, Web of ScienceGoogle Scholar
    • 35. Z. Gao, X. Cui, W. Wan and Z. Gu , Recognition of emotional states using multiscale information analysis of high frequency EEG oscillations, Entropy 21 (2019) 609. Crossref, Medline, Web of ScienceGoogle Scholar
    • 36. M. Z. Soroush, K. Maghooli, S. K. Setarehdan and A. M. Nasrabadi , Emotion recognition through EEG phase space dynamics and Dempster–Shafer theory, Med. Hypotheses 127 (2019) 34–45. Crossref, Medline, Web of ScienceGoogle Scholar
    • 37. B. García-Martínez, A. Fernández-Caballero, R. Alcaraz and A. Martínez-Rodrigo , Application of dispersion entropy for the detection of emotions with electroencephalographic signals, IEEE Trans. Cogn. Develop. Syst. (2021). Medline, Web of ScienceGoogle Scholar
    • 38. Y. Zhang, X. Ji and S. Zhang , An approach to eeg-based emotion recognition using combined feature extraction method, Neurosci. Lett. 633 (2016) 152–157. Crossref, Medline, Web of ScienceGoogle Scholar
    • 39. S. Bagherzadeh, K. Maghooli, J. Farhadi and M. Z. Soroush , Emotion recognition from physiological signals using parallel stacked autoencoders, Neurophysiology 50(6) (2018) 428–435. Crossref, Web of ScienceGoogle Scholar
    • 40. B. García-Martínez, A. Fernández-Caballero, L. Zunino and A. Martínez-Rodrigo , Recognition of emotional states from EEG signals with nonlinear regularity-and predictability-based entropy metrics, Cogn. Comput. 13(2) (2021) 403–417. Crossref, Web of ScienceGoogle Scholar
    • 41. G. G. Knyazev , Cross-frequency coupling of brain oscillations: An impact of state anxiety, Int. J. Psychophysiol. 80(3) (2011) 236–245. Crossref, Medline, Web of ScienceGoogle Scholar
    • 42. A. Barrós-Loscertales, S. E. Hernández, Y. Xiao, J. L. González-Mora and K. Rubia , Resting state functional connectivity associated with Sahaja Yoga Meditation, Front. Hum. Neurosci. 15 (2021) 65. Crossref, Web of ScienceGoogle Scholar
    • 43. R. Cao, Y. Hao, X. Wang, Y. Gao, H. Shi, S. Huo, B. Wang, H. Guo and J. Xiang , EEG functional connectivity underlying emotional valance and arousal using minimum spanning trees, Front. Neurosci. 14 (2020) 355. Crossref, Medline, Web of ScienceGoogle Scholar
    • 44. M. A. Ferdek, C. M. van Rijn and M. Wyczesany , Depressive rumination and the emotional control circuit: An EEG localization and effective connectivity study, Cogn. Affect. Behav. Neurosci. 16(6) (2016) 1099–1113. Crossref, Medline, Web of ScienceGoogle Scholar
    • 45. N. Martini, D. Menicucci, L. Sebastiani, R. Bedini, A. Pingitore, N. Vanello, M. Milanesi, L. Landini and A. Gemignani , The dynamics of EEG gamma responses to unpleasant visual stimuli: From local activity to functional connectivity, NeuroImage 60(2) (2012) 922–932. Crossref, Medline, Web of ScienceGoogle Scholar
    • 46. H.-J. Park and K. Friston , Structural and functional brain networks: From connections to cognition, Science 342(6158) (2013) 1238411. Crossref, Medline, Web of ScienceGoogle Scholar
    • 47. C. Schmidt, D. Piper, B. Pester, A. Mierau and H. Witte , Tracking the reorganization of module structure in time-varying weighted brain functional connectivity networks, Int. J. Neural Syst. 28 (2018) 1750051. Link, Web of ScienceGoogle Scholar
    • 48. J. L. P. Velazquez, R. G. Erra, R. Wennberg and L. G. Dominguez , Correlations of cellular activities in the nervous system: Physiological and methodological considerations, in Coordinated Activity in the Brain (Springer, New York, USA, 2009), pp. 1–24. CrossrefGoogle Scholar
    • 49. L. Cheng, Y. Zhu, J. Sun, L. Deng, N. He, Y. Yang, H. Ling, H. Ayaz, Y. Fu and S. Tong , Principal states of dynamic functional connectivity reveal the link between resting-state and task-state brain: An fMRI study, Int. J. Neural Syst. 28 (2018) 1850002. Link, Web of ScienceGoogle Scholar
    • 50. R. L. Buckner, J. R. Andrews-Hanna and D. L. Schacter , The brain’s default network: Anatomy, function, and relevance to disease, Ann. N.Y. Acad. Sci. 1124(1) (2008) 1–38. Crossref, Medline, Web of ScienceGoogle Scholar
    • 51. M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen and M. E. Raichle , The human brain is intrinsically organized into dynamic, anticorrelated functional networks, Proc. Natl. Acad. Sci. 102(27) (2005) 9673–9678. Crossref, Medline, Web of ScienceGoogle Scholar
    • 52. U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, H. Adeli and D. P. Subha , Automated EEG-based screening of depression using deep convolutional neural network, Comput. Methods Programs Biomed. 161 (2018) 103–113. Crossref, Medline, Web of ScienceGoogle Scholar
    • 53. U. Raghavendra, U. R. Acharya and H. Adeli , Artificial intelligence techniques for automated diagnosis of neurological disorders, Eur. Neurol. 82 (2019) 41–64. Crossref, Medline, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!