World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Dynamics of the “Cognitive” Brain Wave P3b at Rest for Alzheimer Dementia Prediction in Mild Cognitive Impairment

    https://doi.org/10.1142/S0129065722500228Cited by:11 (Source: Crossref)

    Alzheimer’s disease (AD) is the most common cause of dementia that involves a progressive and irrevocable decline in cognitive abilities and social behavior, thus annihilating the patient’s autonomy. The theoretical assumption that disease-modifying drugs are most effective in the early stages hopefully in the prodromal stage called mild cognitive impairment (MCI) urgently pushes toward the identification of robust and individualized markers of cognitive decline to establish an early pharmacological intervention. This requires the combination of well-established neural mechanisms and the development of increasingly sensitive methodologies. Among the neurophysiological markers of attention and cognition, one of the sub-components of the ‘cognitive brain wave’ P300 recordable in an odd-ball paradigm -namely the P3b- is extensively regarded as a sensitive indicator of cognitive performance. Several studies have reliably shown that changes in the amplitude and latency of the P3b are strongly related to cognitive decline and aging both healthy and pathological. Here, we used a P3b spatial filter to enhance the electroencephalographic (EEG) characteristics underlying 175 subjects divided into 135 MCI subjects, 20 elderly controls (EC), and 20 young volunteers (Y). The Y group served to extract the P3b spatial filter from EEG data, which was later applied to the other groups during resting conditions with eyes open and without being asked to perform any task. The group of 135 MCI subjects could be divided into two subgroups at the end of a month follow-up: 75 with stable MCI (MCI-S, not converted to AD), 60 converted to AD (MCI-C). The P3b spatial filter was built by means of a signal processing method called Functional Source Separation (FSS), which increases signal-to-noise ratio by using a weighted sum of all EEG recording channels rather than relying on a single, or a small sub-set, of channels.

    A clear difference was observed for the P3b dynamics at rest between groups. Moreover, a machine learning approach showed that P3b at rest could correctly distinguish MCI from EC (80.6% accuracy) and MCI-S from MCI-C (74.1% accuracy), with an accuracy as high as 93.8% in discriminating between MCI-C and EC. Finally, a comparison of the Bayes factor revealed that the group differences among MCI-S and MCI-C were 138 times more likely to be detected using the P3b dynamics compared with the best performing single electrode (Pz) approach.

    In conclusion, we propose that P3b as measured through spatial filters can be safely regarded as a simple and sensitive marker to predict the conversion from an MCI to AD status eventually combined with other non-neurophysiological biomarkers for a more precise definition of dementia having neuropathological Alzheimer characteristics.

    References

    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!