World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Synchronization Analysis In Epileptic EEG Signals Via State Transfer Networks Based On Visibility Graph Technique

    https://doi.org/10.1142/S0129065721500416Cited by:11 (Source: Crossref)

    Epilepsy is a persistent and recurring neurological condition in a community of brain neurons that results from sudden and abnormal electrical discharges. This paper introduces a new form of assessment and interpretation of the changes in electroencephalography (EEG) recordings from different brain regions in epilepsy disorders based on graph analysis and statistical rescale range analysis. In this study, two different states of epilepsy EEG data (preictal and ictal phases), obtained from 17 subjects (18 channels each), were analyzed by a new method called state transfer network (STN). The analysis performed by STN yields a network metric called motifs, which are averaged over all channels and subjects in terms of their persistence level in the network. The results showed an increase of overall motif persistence during the ictal over the preictal phase, reflecting the synchronization increase during the seizure phase (ictal). An evaluation of intermotif cross-correlation indicated a definite manifestation of such synchronization. Moreover, these findings are compared with several other well-known methods such as synchronization likelihood (SL), visibility graph similarity (VGS), and global field synchronization (GFS). It is hinted that the STN method is in good agreement with approaches in the literature and more efficient. The most significant contribution of this research is introducing a novel nonlinear analysis technique of generalized synchronization. The STN method can be used for classifying epileptic seizures based on the synchronization changes between multichannel data.

    References

    • 1. K. Lehnert, S. Bialonski, M. T. Horstmann, D. Krug, A. Rothkegel, M. Staniek and T. Wagner , Synchronization phenomena in human epileptic brain networks, J. Neurosci. Methods 183(1) (2009) 42–48. Crossref, Medline, Web of ScienceGoogle Scholar
    • 2. D. G. Margineanu , Epileptic hypersynchrony revisited, Neuroreport 21(15) (2010) 963–967. Crossref, Medline, Web of ScienceGoogle Scholar
    • 3. M. Zhen , Reachability analysis of neural masses and seizure control based on combination convolutional neural network, Int. J. Neural Syst. 30(1) (2020) 1–15. Web of ScienceGoogle Scholar
    • 4. U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan and H. Adeli , Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals, Comput. Biol. Med. 100(1) (2018) 270–278. Crossref, Medline, Web of ScienceGoogle Scholar
    • 5. J. Lian, Y. Shi, Y. Zhang, W. Jia, X. Fan and Y. Zheng , Revealing false positive features in epileptic EEG ıdentification, Int. J. Neural Syst. 30(11) (2020) 1–16. Link, Web of ScienceGoogle Scholar
    • 6. C. Sun, H. Cui, W. Zhou, W. Nie, X. Wang and Q. Yuan , Epileptic seizure detection with EEG textural features and ımbalanced classification based on easyensemble learning, Int. J. Neural Syst. 29(10) (2019) 1–17. Link, Web of ScienceGoogle Scholar
    • 7. J. Thomas, J. Jin, P. Thangavel, E. Bagheri, R. Yuvaraj, J. Dauwels, R. Rathakrishnan, J. J. Halford, S. S. Cash and B. Westover , Automated detection of ınterictal epileptiform discharges from scalp electroencephalograms by convolutional neural networks, Int. J. Neural Syst. 30(11) (2020) 1–17. Link, Web of ScienceGoogle Scholar
    • 8. P. P. M. Shanir, K. A. Khan, Y. U. Khan, O. Farooq and H. Adeli , Automatic seizure detection based on morphological features using one-dimensional local binary pattern on long-term EEG, Clin. EEG Neurosci. 49(5) (2018) 1–12. Crossref, Web of ScienceGoogle Scholar
    • 9. J. A. F. Brogin, J. Faber and D. D. Bueno , An efficient approach to define the ınput stimuli to suppress epileptic seizures described by the epileptor model, Int. J. Neural Syst. 30(11) (2020) 1–16. Link, Web of ScienceGoogle Scholar
    • 10. H. S. Nogay and H. Adeli , Detection of epileptic seizure using pretrained deep convolutional neural network and transfer learning, Eur. Neurol. 83 (2021) 602–614. Crossref, Web of ScienceGoogle Scholar
    • 11. G. Liu, W. Zhou and M. Geng , Automatic seizure detection based on S-transform and deep convolutional neural network, Int. J. Neural Syst. 30(4) (2019) 1–15. Web of ScienceGoogle Scholar
    • 12. Y. Li, Z. Yu, Y. Chen, C. Yang, Y. Li, X. A. Li and L. Baosheng , Automatic seizure detection using fully convolutional nested LSTM, Int. J. Neural Syst. 30(4) (2020) 1–22. Link, Web of ScienceGoogle Scholar
    • 13. J. Dan, B. Vandendriessche, W. Van Paesschen, D. Weckhuysen and A. Bertrand , Computationally-efficient algorithm for real-time absence seizure detection in wearable electroencephalography, Int. J. Neural Syst. 30(11) (2020) 1–16. Link, Web of ScienceGoogle Scholar
    • 14. L. Wang, J. B. A. M. Arends, X. Long, P. J. M. Cluitmans and J. P. van Dijk , Seizure pattern-specific epileptic epoch detection in patients with intellectual disability, Biomed. Signal Process. Control 35 (2017) 38–49. Crossref, Web of ScienceGoogle Scholar
    • 15. P. R. Carney, S. Myers and J. D. Geyer , Seizure prediction: Methods, Epilepsy Behav.: E&B 22(11) (2011) 94–101. Crossref, Medline, Web of ScienceGoogle Scholar
    • 16. M. A. F. Harrison, I. Osorio, M. G. Frei, S. Asuri and Y.-C. Lai , Correlation dimension and integral do not predict epileptic seizures, Chaos 15(3) (2005) 033106. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. K. Natarajan, U. R. Acharya, F. Alias, T. Tiboleng and S. K. Puthusserypady , Nonlinear analysis of EEG signals at different mental states, Biomed. Eng. Online 3(7) (2004) 1–11. Medline, Web of ScienceGoogle Scholar
    • 18. C. J. Stam and B. W. Dijk, Van . Synchronization likelihood: An unbiased measure of generalized synchronization in multivariate data sets, Physica D 163 (2002) 236–251. Crossref, Web of ScienceGoogle Scholar
    • 19. K. C. Chua, V. Chandran, U. Rajendra Acharya and C. M. Lim , Analysis of epileptic EEG signals using higher-order spectra, J. Med. Eng. Technol. 33(1) (2009) 42–50. Crossref, MedlineGoogle Scholar
    • 20. A. Adebimpe, A. Aarabi, E. Bourel-Ponchel, M. Mahmoudzadeh and F. Wallois , Functional brain dysfunction in patients with benign childhood epilepsy as revealed by graph theory, PLoS One 10 (2015) e0139228. Crossref, Medline, Web of ScienceGoogle Scholar
    • 21. M. Ahmadlou and H. Adeli , Wavelet-synchronization methodology: A new approach for EEG-based diagnosis of ADHD, Clin. EEG Neurosci. 41(1) (2010) 1–10. Crossref, Medline, Web of ScienceGoogle Scholar
    • 22. M. Ahmadlou, H. Adeli and A. Adeli , Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder, J. Neurosci. Methods 211(2) (2012) 203–209. Crossref, Medline, Web of ScienceGoogle Scholar
    • 23. A. E. Olamat and A. Akan , Synchronization analysis of epilepsy data using global field synchronization, 25th Signal Processing and Communications Applications Conf. (Antalya, Turkey) (2017), pp. 1–4. CrossrefGoogle Scholar
    • 24. M. Ahmadlou and H. Adeli , Fuzzy synchronization likelihood with application to attention-deficit/hyperactivity disorder, Clin. EEG Neurosci. 42(1) (2011) 6–13. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. M. Ahmadlou and H. Adeli , Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems, Physica D 241 (2012) 326–332. Crossref, Web of ScienceGoogle Scholar
    • 26. E. J. Pegg, J. R. Taylor, S. Keller and R. Mohanraj , Interictal structural and functional connectivity in idiopathic generalized epilepsy: A systematic review of graph theoretical studies, Epilepsy Behav. 10(6) (2020) 1–15. Google Scholar
    • 27. T. I. Netoff, R. Clewley, S. Arno, T. Keck and J. A. White , Epilepsy in small-world networks, J. Neurosci. 24 (2004) 8075–8083. Crossref, Medline, Web of ScienceGoogle Scholar
    • 28. M. Ahmadlou, H. Adeli and A. Adeli , New diagnostic EEG markers of the Alzheimer’s disease using visibility graph, J. Neural Transm. 117(9) (2010) 1099–1109. Crossref, Medline, Web of ScienceGoogle Scholar
    • 29. M. Ahmadlou, H. Adeli and A. Adeli , Improved visibility graph fractality with application for the diagnosis of autism spectrum disorder, Physica A: Stat. Mech. Appl. 391(20) (2012) 4720–4726. Crossref, Web of ScienceGoogle Scholar
    • 30. M. Mozaffarilegha and H. Adeli , Visibility graph analysis of speech evoked auditory brainstem response in persistent developmental stuttering, Neurosci. Lett. 6(96) (2019) 28–32. Crossref, Web of ScienceGoogle Scholar
    • 31. A. Olamat, P. Shams and A. Akan , State transfer network of time series based on visibility graph analysis for classifying and prediction of epilepsy seizures (TIPTEKNO), Medical Technologies National Congress, Trabzon, Turkey (2017) 57–61. Google Scholar
    • 32. H. Adeli, Z. Zhou and N. Dadmehr , Analysis of EEG records in an epileptic patient using wavelet transform, J. Neurosci. Methods 123(1) (2003) 69–87. Crossref, Medline, Web of ScienceGoogle Scholar
    • 33. L. Lacasa, B. Luque, F. Ballesteros, J. Luque and J. C. Nuño , From time series to complex networks: The visibility graph, Proc. Natl. Acad. Sci. USA 105(13) (2008) 4972–4975. Crossref, Medline, Web of ScienceGoogle Scholar
    • 34. M. Stephen, C. Gu and H. Yang , Visibility graph based time series analysis, PLoS One 10(11) (2015) 1–19. Crossref, Web of ScienceGoogle Scholar
    • 35. M. Cao, H. Huang, Y. Peng, Q. Dong and Y. He , Toward developmental connectomics of the human brain, Front. Neuroanat. 10(25) (2016) 25. Medline, Web of ScienceGoogle Scholar
    • 36. G. Fagiolo, M. Valente and N. J. Vriend , Segregation in networks, J. Econ. Behav. Organ. 64(3–4 Spec. Iss) (2007) 316–336. Crossref, Web of ScienceGoogle Scholar
    • 37. O. Sporns and R. Kötter , Motifs in brain networks, PLoS Biol. 2(11) (2004) 263–272. Crossref, Web of ScienceGoogle Scholar
    • 38. C. L. Rees, D. W. Wheeler, D. J. Hamilton, C. M. White, A. O. Komendantov and G. A. Ascoli , Graph-theoretic and motif analyses of the hippocampal neuron type potential connectome, ENeuro 3(6) (2016). Crossref, MedlineGoogle Scholar
    • 39. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii and U. Alon , Network motifs: Simple building blocks of complex networks science, Science 298(5594) (2002) 824–827. Crossref, Medline, Web of ScienceGoogle Scholar
    • 40. L. Kristoufek , Re-scaled range analysis and detrended fluctuation analysis: Finite sample properties and confidence ıntervals, AUCO Czech Econ. Rev. 4(3) (2010) 315–329. Google Scholar
    • 41. P. E. O’Connell, D. Koutsoyiannis, H. F. Lins, Y. Markonis, A. Montanari and T. Cohn , The scientific legacy of Harold Edwin Hurst (1880–1978), Hydrol. Sci. J. 61(9) (2016) 1571–1590. Crossref, Web of ScienceGoogle Scholar
    • 42. J. L. Liu, Z. G. Yu and V. Anh , Topological properties and fractal analysis of a recurrence network constructed from fractional Brownian motions., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(3) (2014). Crossref, Web of ScienceGoogle Scholar
    • 43. W. KLonowsk, W. Jernajczyk, K. Niedzielska, A. Rydz and R. Stppien , Quantitative measure of complexity of EEG signal dynamics, Acta Neurobiol. Exp. 5(9) (1999) 315–321. Google Scholar
    • 44. F. Bartolomei et al., Disturbed functional connectivity in brain tumour patients: Evaluation by graph analysis of synchronization matrices, Clin. Neurophysiol. 117 (2006) 2039–2049. Crossref, Medline, Web of ScienceGoogle Scholar
    • 45. M. Schurmann and E. Basar , Functional aspects of alpha oscillations in the EEG, Int. J. Psychophysiol. 3(9) (2001) 151–158. Crossref, Web of ScienceGoogle Scholar
    • 46. C. J. Stam, G. Nolte and A. Daffertshofer , Phase lag ındex: Assessment of functional connectivity from multi-channel EEG and MEG with diminished bias from common sources, Hum. Brain Mapp. 28(11) (2007) 1178–1193. Crossref, Medline, Web of ScienceGoogle Scholar
    • 47. Z. Sankari, H. Adeli and A. Adeli , Wavelet coherence model for diagnosis of alzheimer disease, Clin. EEG Neurosci. 43(4) (2012) 268–278. Crossref, Medline, Web of ScienceGoogle Scholar
    • 48. W. Chang-Chia Liu, P. M. P. Art Chaovalitwongse and B. M. U. , Dynamical feature extraction from brain activity time series, %1 içinde, in Encyclopedia of Data Warehousing and Mining Vol. 4, J. Wang , ed. (IGI Global, 2009), pp. 729–735. CrossrefGoogle Scholar
    • 49. I. Omerhodzic, S. Avdakovic, A. Nuhanovic and K. Dizdarevic , Energy distribution of EEG signals: EEG signal wavelet-neural network classifier, Neurocomputing 2(1) (2010) 210–215. Google Scholar
    • 50. F. Takens , Detecting strange attractors in turbulence, Lect. Notes Math. 898(366) (1981) 366–381. CrossrefGoogle Scholar
    • 51. C.-S. Ouyang, R.-C. Yang, R.-C. Wu, C.-T. Chiang and L.-C. Lin , Determination of antiepileptic drugs withdrawal through EEG hjorth parameter analysis, Int. J. Neural Syst. 30(11) (2020) 1–16. Link, Web of ScienceGoogle Scholar
    • 52. Y. Li, Z. Yu, Y. Chen, C. Yang, Y. Li, X. A. Li and L. Baosheng , Automatic seizure detection using fully convolutional nested LSTM, Int. J. Neural Syst. 30(4) (2020) 1–22. Link, Web of ScienceGoogle Scholar
    • 53. J. Thomas, J. Jin, P. Thangavel, E. Bagheri, R. Yuvaraj, J. Dauwels, R. Rathakrishnan, J. J. Halford, S. S. Cash and B. Westover , Automated detection of ınterictal epileptiform discharges, Int. J. Neural Syst. 30(11) (2020) 1–17. Link, Web of ScienceGoogle Scholar
    • 54. M. Ahmadlou and H. Adeli , Enhanced probabilistic neural network with local decision circles: A robust classifier, Integr. Comput. Aided Eng. 17(3) (2010) 197–210. Crossref, Web of ScienceGoogle Scholar
    • 55. M. H. Rafiei and H. Adeli , A new neural dynamic classification algorithm, IEEE Trans. Neural Netw. Learn. Syst. 28(12) (2017) 3074–3083. Crossref, Medline, Web of ScienceGoogle Scholar
    • 56. D. R. Pereira, M. A. Piteri, A. N. Souza, J. Papa and H. Adeli , FEMa: A finite element machine for fast learning, Neural Comput. Appl. 32(10) (2020) 6393–6404. Crossref, Web of ScienceGoogle Scholar
    • 57. K. M. Rokibul Alam, N. Siddique and H. Adeli , A dynamic ensemble learning algorithm for neural networks, Neural Comput. Appl. 32 (2020) 8675–8690. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!