World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Optimization of Model Training Based on Iterative Minimum Covariance Determinant In Motor-Imagery BCI

    https://doi.org/10.1142/S0129065721500301Cited by:23 (Source: Crossref)

    The common spatial patterns (CSP) algorithm is one of the most frequently used and effective spatial filtering methods for extracting relevant features for use in motor imagery brain–computer interfaces (MI-BCIs). However, the inherent defect of the traditional CSP algorithm is that it is highly sensitive to potential outliers, which adversely affects its performance in practical applications. In this work, we propose a novel feature optimization and outlier detection method for the CSP algorithm. Specifically, we use the minimum covariance determinant (MCD) to detect and remove outliers in the dataset, then we use the Fisher score to evaluate and select features. In addition, in order to prevent the emergence of new outliers, we propose an iterative minimum covariance determinant (IMCD) algorithm. We evaluate our proposed algorithm in terms of iteration times, classification accuracy and feature distribution using two BCI competition datasets. The experimental results show that the average classification performance of our proposed method is 12% and 22.9% higher than that of the traditional CSP method in two datasets (p<0.05), and our proposed method obtains better performance in comparison with other competing methods. The results show that our method improves the performance of MI-BCI systems.

    References

    • 1. H. Yuan and B. He , Brain–computer interfaces using sensorimotor rhythms: Current state and future perspectives, IEEE Trans. Biomed. Eng. 61(5) (2014) 1425–1435. Crossref, Medline, Web of ScienceGoogle Scholar
    • 2. J. Jin, S. Li, I. Daly, Y. Miao, C. Liu, X. Wang and A. Cichocki , The study of generic model set for reducing calibration time in P300-based brain–computer interface, IEEE Trans. Neural Syst. Rehab. Eng. 28(1) (2020) 3–12. Crossref, Medline, Web of ScienceGoogle Scholar
    • 3. A. Ortiz-Rosario and H. Adeli , Brain–computer interface technologies: From signal to action, Rev. Neurosci. 24(5) (2013) 537–552. Crossref, Medline, Web of ScienceGoogle Scholar
    • 4. M. Labecki, M. M. Nowicka and P. Suffczynski , Temporal modulation of steady-state visual evoked potentials, Int. J. Neural Syst. 29(3) (2019) 1850050. Link, Web of ScienceGoogle Scholar
    • 5. J. Li, J. Liang, Q. Zhao, J. Li, K. Hong and L. Zhang , Design of assistive wheelchair system directly steered by human thoughts, Int. J. Neural Syst. 23(3) (2013) 1350013. Link, Web of ScienceGoogle Scholar
    • 6. A. Ortiz-Rosario, I. Berrios-Torres, H. Adeli and J. A. Buford , Combined corticospinal and reticulospinal effects on upper limb muscles, Neurosci. Lett. 561 (2014) 30–34. Crossref, Medline, Web of ScienceGoogle Scholar
    • 7. A. Burns and H. Adeli , Wearable technology for patients with brain and spinal cord injuries, Rev. Neurosci. 28(8) (2017) 913–920. Crossref, Medline, Web of ScienceGoogle Scholar
    • 8. S. Hatamikia and A. M. Nasrabadi , Subject transfer BCI based on composite local temporal correlation common spatial pattern, Comput. Biol. Med. 64 (2015) 1–11. Crossref, Medline, Web of ScienceGoogle Scholar
    • 9. Q. Lyu, Z. Lu, H. Li, S. Qiu, J. Guo, X. Sui, P. Sun, L. Li, X. Chai and N. H. Lovell , A three-dimensional microelectrode array to generate virtual electrodes for epiretinal prosthesis based on a modeling study, Int. J. Neural Syst. 30(3) (2020) 2050006. Link, Web of ScienceGoogle Scholar
    • 10. Q. Wei, S. Zhu, Y. Wang, X. Gao, H. Guo and X. Wu , A training data-driven canonical correlation analysis algorithm for designing spatial filters to enhance performance of SSVEP-based BCIs, Int. J. Neural Syst. 30(5) (2020) 2050020. Link, Web of ScienceGoogle Scholar
    • 11. J. Jin, R. Xiao, I. Daly, Y. Miao, X. Wang and A. Cichocki , Internal feature selection method of CSP based on L1-Norm and Dempster-Shafer theory, IEEE Trans. Neural Netw. Learn. Syst., Early acess, Aug. 24, 2020, https://doi.org/10.1109/TNNLS.2020.3015505. Google Scholar
    • 12. J. Feng, E. Yin, J. Jin, R. Saab, I. Daly, X. Wang, D. Hu and A. Cichocki , Towards correlation-based time window selection method for motor imagery BCIs, Neural Netw. 102 (2018) 87–95. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. J. Jin, Z. Chen, R. Xu, Y. Miao, X. Wang and T.-P. Jung , Developing a novel tactile P300 brain–computer interface with a cheeks-stim paradigm, IEEE Trans. Biomed. Eng. 67(9) (2020) 2585–2593. Crossref, Medline, Web of ScienceGoogle Scholar
    • 14. J. A. Barios, S. Ezquerro, A. Bertomeu-Motos, M. Nann, F. J. Badesa, E. Fernandez, S. R. Soekadar and N. Garcia-Aracil , Synchronization of slow cortical rhythms during motor imagery-based brain–machine interface control, Int. J. Neural Syst. 29(5) (2019) 1850045. Link, Web of ScienceGoogle Scholar
    • 15. J. Jin, E. W. Sellers, S. Zhou, Y. Zhang, X. Wang and A. Cichocki , A P300 brain–computer interface based on a modification of the mismatch negativity paradigm, Int. J. Neural Syst. 25(3) (2015) 1550011. Link, Web of ScienceGoogle Scholar
    • 16. J. Meng, G. Huang, D. Zhang and X. Zhu , Optimizing spatial spectral patterns jointly with channel configuration for brain-computer interface, Neurocomputing 104 (2013) 115–126. Crossref, Web of ScienceGoogle Scholar
    • 17. S. H. George, M. H. Rafiei, A. Borstad, H. Adeli and L. V. Gauthier , Gross motor ability predicts response to upper extremity rehabilitation in chronic stroke, Behav. Brain Res. 333 (2017) 314–322. Crossref, Medline, Web of ScienceGoogle Scholar
    • 18. A. Burns, H. Adeli and J. A. Buford , Upper limb movement classification via electromyographic signals and an enhanced probabilistic network, J. Med. Syst. 44(10) (2020) 176. Crossref, Medline, Web of ScienceGoogle Scholar
    • 19. J. Sorinas, M. Dolores Grima, J. Manuel Ferrandez and E. Fernandez , Identifying suitable brain regions and trial size segmentation for positive/negative emotion recognition, Int. J. Neural Syst. 29(2) (2019) 1850044. Link, Web of ScienceGoogle Scholar
    • 20. Y. Mao, J. Jin, R. Xu, S. Li, Y. Miao and A. Cichocki , The influence of visual attention on the performance of a novel tactile P300 brain–computer interface with cheeks-stim paradigm, Int. J. Neural Syst. 31 (2021) 2150004. Link, Web of ScienceGoogle Scholar
    • 21. C. L. Maeder, C. Sannelli, S. Haufe and B. Blankertz , Pre-Stimulus sensorimotor rhythms influence brain–computer interface classification performance, IEEE Trans. Neural Syst. Rehab. Eng. 20(5) (2012) 653–662. Crossref, Medline, Web of ScienceGoogle Scholar
    • 22. F. Stojic and T. Chau , Nonspecific visuospatial imagery as a novel mental task for online EEG-based BCI control, Int. J. Neural Syst. 30(6) (2020) 2050026. Link, Web of ScienceGoogle Scholar
    • 23. M. Ortiz, E. Ianez, J. A. Gaxiola-Tirado, D. Gutierrez and J. M. Azorin , Study of the functional brain connectivity and lower-limb motorimagery performance after transcranial direct current stimulation, Int. J. Neural Syst. 30(8) (2020) 2050038. Link, Web of ScienceGoogle Scholar
    • 24. Z. Yang, M. H. Rafiei, A. Hall, C. Thomas, H. A. Midtlien, A. Hasselbach, H. Adeli and L. V. Gauthier , A novel methodology for extracting and evaluating therapeutic movements in game-based motion capture rehabilitation systems, J. Med. Syst. 42(12) (2018) 255. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. M. H. Rafiei, K. M. Kelly, A. L. Borstad, H. Adeli and L. V. Gauthier , Predicting improved daily use of the more affected arm poststroke following constraint-induced movement therapy, Phys. Therapy 99(12) (2019) 1667–1678. Crossref, Medline, Web of ScienceGoogle Scholar
    • 26. A. Lozano, J. Sebastian Suarez, C. Soto-Sanchez, J. Garrigos, J. Javier Martinez-Alvarez, J. Manuel Ferrandez and E. Fernandez , Neurolight: A deep learning neural interface for cortical visual prostheses, Int. J. Neural Syst. 30(9) (2020) 2050045. Link, Web of ScienceGoogle Scholar
    • 27. S. H. George, M. H. Rafiei, L. Gauthier, A. Borstad, J. A. Buford and H. Adeli , Computer-aided prediction of extent of motor recovery following constraint-induced movement therapy in chronic stroke, Behav. Brain Res. 329 (2017) 191–199. Crossref, Medline, Web of ScienceGoogle Scholar
    • 28. Q. Wu, Y. Zhang, J. Liu, J. Sun, A. Cichocki and F. Gao , Regularized group sparse discriminant analysis for P300-based brain–computer interface, Int. J. Neural Syst. 29(6) (2019) 1950002. Link, Web of ScienceGoogle Scholar
    • 29. M. Li, W. Li and H. Zhou , Increasing N200 potentials via visual stimulus depicting humanoid robot behavior, Int. J. Neural Syst. 26(1) (2016) 1550039. Link, Web of ScienceGoogle Scholar
    • 30. J. Jin, B. Z. Allison, Y. Zhang, X. Wang and A. Cichocki , An ERP-based BCI using an oddball paradigm with different faces and reduced errors in critical functions, Int. J. Neural Syst. 24(8) (2014) 1450027. Link, Web of ScienceGoogle Scholar
    • 31. B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe and K.-R. Mueller, Optimizing spatial filters for robust EEG single-trial analysis, IEEE Signal Process. Mag. 25(1) (2008) 41–56. Google Scholar
    • 32. M. Arvaneh, C. Guan, K. K. Ang and C. Quek , Optimizing the channel selection and classification accuracy in EEG-based BCI, IEEE Trans. Biomed. Eng. 58(6) (2011) 1865–1873. Crossref, Medline, Web of ScienceGoogle Scholar
    • 33. J. Muller-Gerking, G. Pfurtscheller and H. Flyvbjerg , Designing optimal spatial filters for single-trial EEG classification in a movement task, Clin. Neurophysiol. 110(5) (1999) 787–798. Crossref, Medline, Web of ScienceGoogle Scholar
    • 34. M. Rybar, I. Daly and R. Poli , Potential pitfalls of widely used implementations of common spatial patterns, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 20–24 July, 2020, Montreal, Canada, pp. 196–199. Google Scholar
    • 35. A. Ortiz-Rosario, H. Adeli and J. A. Buford , Wavelet methodology to improve single unit isolation in primary motor cortex cells, J. Neurosci. Meth. 246 (2015) 106–118. Crossref, Medline, Web of ScienceGoogle Scholar
    • 36. F. Lotte and C. Guan , Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms, IEEE Trans. Biomed. Eng. 58(2) (2011) 355–362. Crossref, Medline, Web of ScienceGoogle Scholar
    • 37. H. Wang and W. Zheng , Local temporal common spatial patterns for robust single-trial EEG classification, IEEE Trans. Neural Syst. Rehab. Eng. 16(2) (2008) 131–139. Crossref, Medline, Web of ScienceGoogle Scholar
    • 38. R. Zhang, P. Xu, T. Liu, Y. Zhang, L. Guo, P. Li and D. Yao , Local temporal correlation common spatial patterns for single trial EEG classification during motor imagery, Comput. Math. Meth. Med. (2013) 591216. Medline, Web of ScienceGoogle Scholar
    • 39. M. Krauledat, G. Dornhege, B. Blankertz and K. Müller , Robustifying EEG data analysis by removing outliers, Choas Complexity Lett. 2(2) (2009) 251–266. Google Scholar
    • 40. M.-C. Corsi, M. Chavez, D. Schwartz, L. Hugueville, A. N. Khambhati, D. S. Bassett and F. D. V. Fallani , Integrating EEG and MEG signals to improve motor imagery classification in brain–computer interface, Int. J. Neural Syst. 29(1) (2019) 1850014. Link, Web of ScienceGoogle Scholar
    • 41. E. Yin, T. Zeyl, R. Saab, D. Hu, Z. Zhou and T. Chau , An auditory-tactile visual saccade-independent p300 brain–computer interface, Int. J. Neural Syst. 26(1) (2016) 1650001. Link, Web of ScienceGoogle Scholar
    • 42. P. J. Rousseeuw , Multivariate estimation with high breakdown point, Mathematical statistics and applications 8(283–297) (1985) 37. Google Scholar
    • 43. M. Hubert, M. Debruyne and P. J. Rousseeuw , Minimum Covariance Determinant and Extensions (Wiley, 2017), p. e:1421. Google Scholar
    • 44. P. J. Rousseeuw and K. V. Driessen , A fast algorithm for the minimum covariance determinant estimator, Technometrics 41(3) (1999) 212–223. Crossref, Web of ScienceGoogle Scholar
    • 45. S. Bao, L. Luo, J. Mao, D. Tang and Z. Ding , Robust monitoring of industrial processes in the presence of outliers in training data, Ind. Eng. Chem. Res. 57(24) (2018) 8230–8239. Crossref, Web of ScienceGoogle Scholar
    • 46. X. Yong, R. K. Ward and G. E. Birch , Robust common spatial patterns for EEG signal preprocessing, 2008 30th Annual Int. Conf. IEEE Eng. Med. Biol. Soc. 20–25 August 2008, Vancouver, Canada, pp. 2087–2090. Google Scholar
    • 47. A. S. Aghaei, M. S. Mahanta and K. N. Plataniotis , Separable common spatio-spectral patterns for motor imagery BCI systems, IEEE Trans. Biomed. Eng. 63(1) (2016) 15–29. Crossref, Medline, Web of ScienceGoogle Scholar
    • 48. A. M. Alvarez-Meza, L. F. Velasquez-Martinez and G. Castellanos-Dominguez , Time-series discrimination using feature relevance analysis in motor imagery classification, Neurocomputing 151 (2015) 122–129. Crossref, Web of ScienceGoogle Scholar
    • 49. B. Nasihatkon, R. Boostani and M. Z. Jahromi , An efficient hybrid linear and kernel CSP approach for EEG feature extraction, Neurocomputing 73(1–3) (2009) 432–437. Crossref, Web of ScienceGoogle Scholar
    • 50. L. F. Nicolas-Alonso, R. Corralejo, J. Gomez-Pilar, D. Alvarez and R. Hornero , Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain-computer interfaces, Neurocomputing 159 (2015) 186–196. Crossref, Web of ScienceGoogle Scholar
    • 51. J. Jin, Y. Miao, I. Daly, C. Zuo, D. Hu and A. Cichocki , Correlation-based channel selection and regularized feature optimization for MI-based BCI, Neural Netw. 118 (2019) 262–270. Crossref, Medline, Web of ScienceGoogle Scholar
    • 52. J. Jin, C. Liu, I. Daly, Y. Miao, S. Li, X. Wang and A. Cichocki , Bispectrum-based channel selection for motor imagery based brain–computer interfacing, IEEE Trans. Neural Syst. Rehab. Eng. 28(10) (2020) 2153–2163. Crossref, Medline, Web of ScienceGoogle Scholar
    • 53. P. J. Rousseeuw , Least median of squares regression, J. Am. Stat. Assoc. 79(388) (1984) 871–880. Crossref, Web of ScienceGoogle Scholar
    • 54. M. Hubert, P. J. Rousseeuw and S. Van Aelst , High-breakdown robust multivariate methods, Stat. Sci. 23(1) (2008) 92–119. Crossref, Web of ScienceGoogle Scholar
    • 55. Y.-W. Chen and C.-J. Lin , Combining SVMs with various feature selection strategies, in Feature Extraction: Foundations and Applications, (Springer, Berlin, 2006), pp. 315–324. CrossrefGoogle Scholar
    • 56. Q. Gu, Z. Li and J. Han, Generalized fisher score for feature selection, preprint (2012), arXiv:1202.3725. Google Scholar
    • 57. V. N. Vapnik , An overview of statistical learning theory, IEEE Trans. Neural Netw. 10(5) (1999) 988–999. Crossref, Medline, Web of ScienceGoogle Scholar
    • 58. G. Dornhege, B. Blankertz, G. Curio and K. R. Muller , Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms, IEEE Trans. Biomed. Eng. 51(6) (2004) 993–1002. Crossref, Medline, Web of ScienceGoogle Scholar
    • 59. B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Mueller and G. Curio , The non-invasive Berlin brain–computer interface: Fast acquisition of effective performance in untrained subjects, NeuroImage 37(2) (2007) 539–550. Crossref, Medline, Web of ScienceGoogle Scholar
    • 60. H. Kang, Y. Nam and S. Choi , Composite common spatial pattern for subject-to-subject transfer, IEEE Signal Process. Lett. 16(8) (2009) 683–686. Crossref, Web of ScienceGoogle Scholar
    • 61. C.-L. Yeh, P.-L. Lee, W.-M. Chen, C.-Y. Chang, Y.-T. Wu and G.-Y. Lan , Improvement of classification accuracy in a phase-tagged steady-state visual evoked potential-based brain computer interface using multiclass support vector machine, Biomed. Eng. Online 12 (2013) 46. Crossref, Medline, Web of ScienceGoogle Scholar
    • 62. D. J. Krusienski, E. W. Sellers, F. Cabestaing, S. Bayoudh, D. J. McFarland, T. M. Vaughan and J. R. Wolpaw , A comparison of classification techniques for the P300 speller, J. Neural Eng. 3(4) (2006) 299–305. Crossref, Medline, Web of ScienceGoogle Scholar
    • 63. A. Burns, H. Adeli and J. A. Buford , Brain–computer interface after nervous system injury, Neuroscientist 20(6) (2014) 639–651. Crossref, Medline, Web of ScienceGoogle Scholar
    • 64. P. Gaur, K. McCreadie, R. B. Pachori, H. Wang and G. Prasad , Tangent space features-based transfer learning classification model for two-class motor imagery brain–computer interface, Int. J. Neural Syst. 29(10) (2019) 1950025. Link, Web of ScienceGoogle Scholar
    • 65. E. Lopez-Larraz, J. Ibanez, F. Trincado-Alonso, E. Monge-Pereira, J. Luis Pons and L. Montesano , Comparing recalibration strategies for electroencephalography-based decoders of movement intention in neurological patients with motor disability, Int. J. Neural Syst. 28(7) (2018) 1750060. Link, Web of ScienceGoogle Scholar
    • 66. K. K. Ang, Z. Y. Chin, H. Zhang and C. Guan , Robust filter bank common spatial pattern (RFBCSP) in motor-imagery-based brain–computer interface, 2009 Annual Int. Conf. IEEE Eng. Med. Biol. Soc. 3–6 September 2009, Minneapolis, MN, USA, pp. 578–581. Google Scholar
    • 67. M. H. Rafiei and H. Adeli , A new neural dynamic classification algorithm, IEEE Trans. Neural Netw. Learn. Syst. 28(11) (2017) 3074–3083. Crossref, Medline, Web of ScienceGoogle Scholar
    • 68. M. Ahmadlou and H. Adeli , Enhanced probabilistic neural network with local decision circles: A robust classifier, Integr. Comput.-Aided Eng. 17(3) (2010) 197–210. Crossref, Web of ScienceGoogle Scholar
    • 69. K. M. R. Alam, N. Siddique and H. Adeli , A dynamic ensemble learning algorithm for neural networks, Neural Comput. Appl. 32(11) (2020) 8675–8690. Crossref, Web of ScienceGoogle Scholar
    • 70. D. R. Pereira, M. A. Piteri, A. N. Souza, J. P. Papa and H. Adeli , FEMa: A finite element machine for fast learning, Neural Comput. Appl. 32(10) (2020) 6393–6404. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!